Faculty Scholarship

Showing 1 - 2 of 2 Items

Mutation of an Arabidopsis Golgi membrane protein ELMO1 reduces cell adhesion

Date: 2021-05-01

Creator: Bruce D. Kohorn, Frances D.H. Zorensky, Jacob Dexter-Meldrum, Salem Chabout, Gregory, Mouille, Susan Kohorn

Access: Open access

Plant growth, morphogenesis and development involve cellular adhesion, a process dependent on the composition and structure of the extracellular matrix or cell wall. Pectin in the cell wall is thought to play an essential role in adhesion, and its modification and cleavage are suggested to be highly regulated so as to change adhesive properties. To increase our understanding of plant cell adhesion, a population of ethyl methanesulfonate-mutagenized Arabidopsis were screened for hypocotyl adhesion defects using the pectin binding dye Ruthenium Red that penetrates defective but not wild-type (WT) hypocotyl cell walls. Genomic sequencing was used to identify a mutant allele of ELMO1 which encodes a 20 kDa Golgi membrane protein that has no predicted enzymatic domains. ELMO1 colocalizes with several Golgi markers and elmo1-/- plants can be rescued by an ELMO1-GFP fusion. elmo1-/- exhibits reduced mannose content relative to WT but no other cell wall changes and can be rescued to WT phenotype by mutants in ESMERALDA1, which also suppresses other adhesion mutants. elmo1 describes a previously unidentified role for the ELMO1 protein in plant cell adhesion.


The state of cell wall pectin monitored by wall associated kinases: A model

Date: 2015-07-03

Creator: Bruce D. Kohorn

Access: Open access

The Wall Associated Kinases (WAKs) bind to both cross-linked polymers of pectin in the plant cell wall, but have a higher affinity for smaller fragmented pectins that are generated upon pathogen attack or wounding. WAKs are required for cell expansion during normal seedling development and this involves pectin binding and a signal transduction pathway involving MPK3 and invertase induction. Alternatively WAKs bind pathogen generated pectin fragments to activate a distinct MPK6 dependent stress response. Evidence is provided for a model for how newly generated pectin fragments compete for longer pectins to alter the WAK dependent responses.