Faculty Scholarship
Showing 1 - 2 of 2 Items
Clonal growth: Invasion or stability? A comparative study of clonal architecture and diversity in native and introduced lineages of Phragmites australis (Poaceae)
Date: 2014-09-01
Creator: Vladimir Douhovnikoff, Eric L.G. Hazelton
Access: Open access
- Premise of the study: The characteristics of clonal growth that are advantageous in invasive plants can also result in native plants’ ability to resist invasion. In Maine, we compared the clonal architecture and diversity of an invasive lineage (introduced Phragmites) and a noninvasive lineage (native Phragmites) present in much of North America. This study is the fi rst on standscale diversity using a sample size and systematic spatial-sampling scheme adequate for characterizing clonal structure in Phragmites. Our questions included: (1) Does the structure and extent of clonal growth suggest that the potential for clonal growth contributes to the invasiveness of the introduced lineage? (2) Is clonal growth common in the native lineage, acting as a possible source of ecological resistance and resilience?
Maximal stomatal conductance to water and plasticity in stomatal traits differ between native and invasive introduced lineages of Phragmites australis in North America
Date: 2016-01-27
Creator: V. Douhovnikoff, S. H. Taylor, E. L.G. Hazelton, C. M. Smith, J., O'Brien
Access: Open access
- The fitness costs of reproduction by clonal growth can include a limited ability to adapt to environmental and temporal heterogeneity. Paradoxically, some facultatively clonal species are not only able to survive, but colonize, thrive and expand in heterogeneous environments. This is likely due to the capacity for acclimation (sensu stricto) that compensates for the fitness costs and complements the ecological advantages of clonality. Introduced Phragmites australis demonstrates great phenotypic plasticity in response to temperature, nutrient availability, geographic gradient, water depths, habitat fertility, atmospheric CO2, interspecific competition and intraspecific competition for light. However, no in situ comparative subspecies studies have explored the difference in plasticity between the non-invasive native lineage and the highly invasive introduced lineage. Clonality of the native and introduced lineages makes it possible to control for genetic variation, making P. australis a unique system for the comparative study of plasticity. Using previously identified clonal genotypes, we investigated differences in their phenotypic plasticity through measurements of the lengths and densities of stomata on both the abaxial (lower) and adaxial (upper) surfaces of leaves, and synthesized these measurements to estimate impacts on maximum stomatal conductance to water (gwmax). Results demonstrated that at three marsh sites, invasive lineages have consistently greater gwmax than their native congeners, as a result of greater stomatal densities and smaller stomata. Our analysis also suggests that phenotypic plasticity, determined as within-genotype variation in gwmax, of the invasive lineage is similar to, or exceeds, that shown by the native lineage.