Faculty Scholarship
Showing 1 - 3 of 3 Items
The capacity to act in trans varies among drosophila enhancers
Date: 2016-05-01
Creator: Amanda J. Blick, Ilana Mayer-Hirshfeld, Beatriz R. Malibiran, Matthew A. Cooper, Pieter A., Martino, Justine E. Johnson, Jack R. Bateman
Access: Open access
- The interphase nucleus is organized such that genomic segments interact in cis, on the same chromosome, and in trans, between different chromosomes. In Drosophila and other Dipterans, extensive interactions are observed between homologous chromosomes, which can permit enhancers and promoters to communicate in trans. Enhancer action in trans has been observed for a handful of genes in Drosophila, but it is as yet unclear whether this is a general property of all enhancers or specific to a few. Here, we test a collection of well-characterized enhancers for the capacity to act in trans. Specifically, we tested 18 enhancers that are active in either the eye or wing disc of third instar Drosophila larvae and, using two different assays, found evidence that each enhancer can act in trans. However, the degree to which trans-action was supported varied greatly between enhancers. Quantitative analysis of enhancer activity supports a model wherein an enhancer’s strength of transcriptional activation is a major determinant of its ability to act in trans, but that additional factors may also contribute to an enhancer’s trans-activity. In sum, our data suggest that a capacity to activate a promoter on a paired chromosome is common among Drosophila enhancers.
Position effects influence transvection in drosophila melanogaster
Date: 2019-01-01
Creator: Thomas D. King, Justine E. Johnson, Jack R. Bateman
Access: Open access
- Transvection is an epigenetic phenomenon wherein regulatory elements communicate between different chromosomes in trans, and is thereby dependent upon the three-dimensional organization of the genome. Transvection is best understood in Drosophila, where homologous chromosomes are closely paired in most somatic nuclei, although similar phenomena have been observed in other species. Previous data have supported that the Drosophila genome is generally permissive to enhancer action in trans, a form of transvection where an enhancer on one homolog activates gene expression from a promoter on a paired homolog. However, the capacity of different genomic positions to influence the quantitative output of transvection has yet to be addressed. To investigate this question, we employed a transgenic system that assesses and compares enhancer action in cis and in trans at defined chromosomal locations. Using the strong synthetic eye-specific enhancer GMR, we show that loci supporting strong cis-expression tend to support robust enhancer action in trans, whereas locations with weaker cis-expression show reduced transvection in a fluorescent reporter assay. Our subsequent analysis is consistent with a model wherein the chromatin state of the transgenic insertion site is a primary determinant of the degree to which enhancer action in trans will be supported, whereas other factors such as locus-specific variation in somatic homolog pairing are of less importance in influencing position effects on transvection.
Transvection-based gene regulation in Drosophila is a complex and plastic trait
Date: 2014-01-01
Creator: Xinyang Bing, Teresa Z. Rzezniczak, Jack R. Bateman, Thomas J.S. Merritt
Access: Open access
- Transvection, a chromosome pairing-dependent form of trans-based gene regulation, is potentially widespread in the Drosophila melanogaster genome and varies across cell types and within tissues in D. melanogaster, characteristics of a complex trait. Here, we demonstrate that the trans-interactions at the Malic enzyme (Men) locus are, in fact, transvection as classically defined and are plastic with respect to both genetic background and environment. Using chromosomal inversions, we show that trans-interactions at the Men locus are eliminated by changes in chromosomal architecture that presumably disrupt somatic pairing. We further show that the magnitude of transvection at the Men locus is modified by both genetic background and environment (temperature), demonstrating that transvection is a plastic phenotype. Our results suggest that transvection effects in D. melanogaster are shaped by a dynamic interplay between environment and genetic background. Interestingly, we find that cis-based regulation of the Men gene is more robust to genetic background and environment than trans-based. Finally, we begin to uncover the nonlocal factors that may contribute to variation in transvection overall, implicating Abd-B in the regulation of Men in cis and in trans in an allele-specific and tissue-specific manner, driven by differences in expression of the two genes across genetic backgrounds and environmental conditions.