Showing 91 - 100 of 257 Items

Fgf signaling is required for zebrafish tooth development

Date: 2004-10-01

Creator: William R. Jackman, Bruce W. Draper, David W. Stock

Access: Open access

We have investigated fibroblast growth factor (FGF) signaling during the development of the zebrafish pharyngeal dentition with the goal of uncovering novel roles for FGFs in tooth development as well as phylogenetic and topographic diversity in the tooth developmental pathway. We found that the tooth-related expression of several zebrafish genes is similar to that of their mouse orthologs, including both epithelial and mesenchymal markers. Additionally, significant differences in gene expression between zebrafish and mouse teeth are indicated by the apparent lack of fgf8 and pax9 expression in zebrafish tooth germs. FGF receptor inhibition with SU5402 at 32 h blocked dental epithelial morphogenesis and tooth mineralization. While the pharyngeal epithelium remained intact as judged by normal pitx2 expression, not only was the mesenchymal expression of lhx6 and lhx7 eliminated as expected from mouse studies, but the epithelial expression of dlx2a, dlx2b, fgf3, and fgf4 was as well. This latter result provides novel evidence that the dental epithelium is a target of FGF signaling. However, the failure of SU5402 to block localized expression of pitx2 suggests that the earliest steps of tooth initiation are FGF-independent. Investigations of specific FGF ligands with morpholino antisense oligonucleotides revealed only a mild tooth shape phenotype following fgf4 knockdown, while fgf8 inhibition revealed only a subtle down-regulation of dental dlx2b expression with no apparent effect on tooth morphology. Our results suggest redundant FGF signals target the dental epithelium and together are required for dental morphogenesis. Further work will be required to elucidate the nature of these signals, particularly with respect to their origins and whether they act through the mesenchyme. © 2004 Elsevier Inc. All rights reserved.


Rapid evolution of a coadapted gene complex: Evidence from the segregation Distorter (SD) system of meiotic drive in Drosophila melanogaster

Date: 1996-09-11

Creator: Michael F. Palopoli, Chung I. Wu

Access: Open access

Segregation Distorter (SD) is a system of meiotic drive found in natural populations of Drosophila melanogaster. Males heterozygous for an SD second chromosome and a normal homologue (SD+) produce predominantly SD- bearing sperm. The coadapted gene complex responsible for this transmission advantage spans the second chromosome centromere, consisting of three major and several minor interacting loci. To investigate the evolutionary history of this system, we surveyed levels of polymorphism and divergence at six genes that together encompass this pericentromeric region and span seven map units. Interestingly, there was no discernible divergence between SD and SD1 chromosomes for any of these molecular markers. Furthermore, SD chromosomes harbored much less polymorphism than did SD+ chromosomes. The results suggest that the SD system evolved recently, swept to appreciable frequencies worldwide, and carried with it the entire second chromosome centromeric region (roughly 10% of the genome). Despite its well-documented genetic complexity, this coadapted systems appears to have evolved on a time scale that is much shorter than can be gauge using nucleotide substitution data. Finally, the large genomic region hitchhiking with SD indicates that a multilocus, epistatically selected could affect the levels of DNA polymorphism observed in regions of reduced recombination.


Miniature of Determining the influence of proximal Zeste binding sites and promoters on rates of transvection
Determining the influence of proximal Zeste binding sites and promoters on rates of transvection
This record is embargoed.
    • Embargo End Date: 2026-05-17

    Date: 2023-01-01

    Creator: Molly Henderson

    Access: Embargoed



      Miniature of High Resolution Molecular Analysis of the Hedgehog Pathway in Tooth Development
      High Resolution Molecular Analysis of the Hedgehog Pathway in Tooth Development
      This record is embargoed.
        • Embargo End Date: 2026-05-20

        Date: 2021-01-01

        Creator: Claire Christine Havig

        Access: Embargoed



          Miniature of The impact of temperature on the sea star oscillatory gait
          The impact of temperature on the sea star oscillatory gait
          This record is embargoed.
            • Embargo End Date: 2025-05-14

            Date: 2020-01-01

            Creator: Emma Victoria Bertke

            Access: Embargoed



              Coordination of distinct but interacting rhythmic motor programs by a modulatory projection neuron using different co-transmitters in different ganglia

              Date: 2013-05-01

              Creator: Molly A. Kwiatkowski, Emily R. Gabranski, Kristen E. Huber, M. Christine Chapline, Andrew E., Christie, Patsy S. Dickinson

              Access: Open access

              While many neurons are known to contain multiple neurotransmitters, the specific roles played by each co-transmitter within a neuron are often poorly understood. Here, we investigated the roles of the co-transmitters of the pyloric suppressor (PS) neurons, which are located in the stomatogastric nervous system (STNS) of the lobster Homarus americanus. The PS neurons are known to contain histamine; using RT-PCR, we identified a second co-transmitter as the FMRFamide-like peptide crustacean myosuppressin (Crust-MS). The modulatory effects of Crust-MS application on the gastric mill and pyloric patterns, generated in the stomatogastric ganglion (STG), closely resembled those recorded following extracellular PS neuron stimulation. To determine whether histamine plays a role in mediating the effects of the PS neurons in the STG, we bath-applied histamine receptor antagonists to the ganglion. In the presence of the antagonists, the histamine response was blocked, but Crust-MS application and PS stimulation continued to modulate the gastric and pyloric patterns, suggesting that PS effects in the STG are mediated largely by Crust-MS. PS neuron stimulation also excited the oesophageal rhythm, produced in the commissural ganglia (CoGs) of the STNS. Application of histamine, but not Crust-MS, to the CoGs mimicked this effect. Histamine receptor antagonists blocked the ability of both histamine and PS stimulation to excite the oesophageal rhythm, providing strong evidence that the PS neurons use histamine in the CoGs to exert their effects. Overall, our data suggest that the PS neurons differentially utilize their co-transmitters in spatially distinct locations to coordinate the activity of three independent networks. © 2013. Published by The Company of Biologists Ltd.


              Incidence, size and spatial structure of clones in second-growth stands of coast redwood, Sequoia sempervirens (Cupressaceae)

              Date: 2004-07-01

              Creator: Vladimir Douhovnikoff, Adelaide M. Cheng, Richard S. Dodd

              Access: Open access

              The ecology and evolutionary potential of coast redwood (Sequoia sempervirens) is significantly influenced by the important role clonal spread plays in its reproduction and site persistence. In nine second-growth stands, amplified fragment length polymorphisms (AFLPs) were used to identify redwood clonal architecture. Clones (multistem genets) dominated sites by representing an average of 70% of stems measured, ranging in size from two to 20 stems. As a result, a relatively small number of genets can monopolize a disproportionate amount of site resources, are more likely to persist over time, and have greater on-site genetic representation. Clones were not limited to fairy-ring structures, but consisted of a wide range of shapes including concentric rings, ring chains, disjunct, and linear structures. Between-ramet distances of up to 40 m were measured, indicating that clonal reproduction is not limited to basal stump resprouting. Clonal structure in second-growth stands was similar to earlier reports from old growth, emphasizing the importance of site persistence and long-term, gradual site development. Smaller ramet numbers per genet in old growth is probably due to local within-genet self thinning. Management and conservation of redwoods will benefit from a better understanding of the dynamics and structure of clonal spread in these forests.


              Intron Size Correlates Positively with Recombination Rate in Caenorhabditis elegans

              Date: 2004-03-01

              Creator: Anuphap Prachumwat, Laura DeVincentis, Michael F. Palopoli

              Access: Open access

              A negative correlation between intron size and recombination rate has been reported for the Drosophila melanogaster and human genomes. Population-genetic models suggest that this pattern could be caused by an interaction between recombination rate and the efficacy of natural selection. To test this idea, we examined variation in intron size and recombination rate across the genome of the nematode Caenorhabditis elegans. Interestingly, we found that intron size correlated positively with recombination rate in this species.


              Global divergence of the human follicle mite Demodex folliculorum: Persistent associations between host ancestry and mite lineages

              Date: 2015-12-29

              Creator: Michael F. Palopoli, Daniel J. Fergus, Samuel Minot, Dorothy T. Pei, W. Brian, Simison, Iria Fernandez-Silva, Megan S. Thoemmes, Robert R. Dunn, Michelle Trautwein

              Access: Open access

              Microscopic mites of the genus Demodex live within the hair follicles of mammals and are ubiquitous symbionts of humans, but little molecular work has been done to understand their genetic diversity or transmission. Here we sampled mite DNA from 70 human hosts of diverse geographic ancestries and analyzed 241 sequences from the mitochondrial genome of the species Demodex folliculorum. Phylogenetic analyses recovered multiple deep lineages including a globally distributed lineage common among hosts of European ancestry and three lineages that primarily include hosts of Asian, African, and Latin American ancestry. To a great extent, the ancestral geography of hosts predicted the lineages of mites found on them; 27% of the total molecular variance segregated according to the regional ancestries of hosts. We found that D. folliculorum populations are stable on an individual over the course of years and that some Asian and African American hosts maintain specific mite lineages over the course of years or generations outside their geographic region of birth or ancestry. D. folliculorum haplotypes were much more likely to be shared within families and between spouses than between unrelated individuals, indicating that transmission requires close contact. Dating analyses indicated that D. folliculorum origins may predate modern humans. Overall, D. folliculorum evolution reflects ancient human population divergences, is consistent with an out-of-Africa dispersal hypothesis, and presents an excellent model system for further understanding the history of human movement.


              Molecular basis of the copulatory plug polymorphism in Caenorhabditis elegans

              Date: 2008-08-21

              Creator: Michael F. Palopoli, Matthew V. Rockman, Aye TinMaung, Camden Ramsay, Stephen, Curwen, Andrea Aduna, Jason Laurita, Leonid Kruglyak

              Access: Open access

              Heritable variation is the raw material for evolutionary change, and understanding its genetic basis is one of the central problems in modern biology. We investigated the genetic basis of a classic phenotypic dimorphism in the nematode Caenorhabditis elegans. Males from many natural isolates deposit a copulatory plug after mating, whereas males from other natural isolates-including the standard wild-type strain (N2 Bristol) that is used in most research laboratories-do not deposit plugs. The copulatory plug is a gelatinous mass that covers the hermaphrodite vulva, and its deposition decreases the mating success of subsequent males. We show that the plugging polymorphism results from the insertion of a retrotransposon into an exon of a novel mucin-like gene, plg-1, whose product is a major structural component of the copulatory plug. The gene is expressed in a subset of secretory cells of the male somatic gonad, and its loss has no evident effects beyond the loss of male mate-guarding. Although C. elegans descends from an obligate-outcrossing, male?female ancestor, it occurs primarily as self-fertilizing hermaphrodites. The reduced selection on male-male competition associated with the origin of hermaphroditism may have permitted the global spread of a loss-of-function mutation with restricted pleiotropy. ©2008 Macmillan Publishers Limited. All rights reserved.