Showing 5351 - 5400 of 5831 Items
Date: 2006-03-28
Creator: Danielle H. Dube, Jennifer A. Prescher, Chi M. Quang, Carolyn R. Bertozzi
Access: Open access
- Changes in O-linked protein glycosylation are known to correlate with disease states but are difficult to monitor in a physiological setting because of a lack of experimental tools. Here, we report a technique for rapid profiling of O-linked glycoproteins in living animals by metabolic labeling with N-azidoacetylgalactosamine (GalNAz) followed by Staudinger ligation with phosphine probes. After injection of mice with a peracetylated form of GalNAz, azide-labeled glycoproteins were observed in a variety of tissues, including liver, kidney, and heart, in serum, and on isolated splenocytes. B cell glycoproteins were robustly labeled with GalNAz but T cell glycoproteins were not, suggesting fundamental differences in glycosylation machinery or metabolism. Furthermore, GalNAz-labeled B cells could be selectively targeted with a phosphine probe by Staudinger ligation within the living animal. Metabolic labeling with GalNAz followed by Staudinger ligation provides a means for proteomic analysis of this posttranslational modification and for identifying O-linked glycoprotein fingerprints associated with disease. © 2006 by The National Academy of Sciences of the USA.
Date: 2020-06-03
Creator: Erik Nelson
Access: Open access
- Glaeser et al. (2008) argue that the relative distribution of poor and rich households (HHs) in American cities is "strongly" explained by the spatial location of the cities' public transportation (PT) networks. Among their claims: 1) The broad distribution of poor and rich HHs in the typical American city is consistent with a basic monocentric city model that includes commute technology speeds; 2) Poor commuters will overwhelmingly transition from commuting by PT to car if they experience a substantial increase in their HH’s income; 3) areas in American cities that receive new PT infrastructure become poorer over time. Using 2017 data I find empirical evidence that partially or wholly contradicts these three claims. First, as of 2017, the observed concentration of poor HHs in the inner city and rich HHs in the suburbs of the US’ smaller cities cannot be explained by monocentric model that includes commute speeds. Second, as of 2017, significant increases in poor HHs’ incomes were not expected to lead to a "massive shift" towards car commuting in these HHs; most of these poor workers commute by car already. Third, using data from four cities that expanded their light-rail and rapid-bus network in the early 2000s, I find that neighborhoods surrounding new light-rail or rapid-bus stations either saw little change in their income patterns or became slightly richer after station opening. In conclusion, as of 2017, the spatial distribution of HH incomes within American urban areas is not as intricately linked to the location of PT networks as Glaeser et al. (2008) would have us believe. As an addendum to the analysis I add some thoughts on how the COVID-19 pandemic might affect commuting behavior and income distributions within urban areas over the next decade.
Date: 2003-01-01
Creator: Caitlin M. Nelson, Christine L. Paglia
Access: Open access
- "This brochure accompanies an exhibition of the same name at the Bowdoin College Museum of Art from April 17 through June 15, 2003"--Page 2 of cover
Date: 2018-01-01
Creator: Jonah Watt
Access: Open access
- [No abstract]
Date: 2010-12-02
Creator: William R. Jackman, James J. Yoo, David W. Stock
Access: Open access
- Background. The accessibility of the developing zebrafish pharyngeal dentition makes it an advantageous system in which to study many aspects of tooth development from early initiation to late morphogenesis. In mammals, hedgehog signaling is known to be essential for multiple stages of odontogenesis; however, potential roles for the pathway during initiation of tooth development or in later morphogenesis are incompletely understood. Results. We have identified mRNA expression of the hedgehog ligands shha and the receptors ptc1 and ptc2 during zebrafish pharyngeal tooth development. We looked for, but did not detect, tooth germ expression of the other known zebrafish hedgehog ligands shhb, dhh, ihha, or ihhb, suggesting that as in mammals, only Shh participates in zebrafish tooth development. Supporting this idea, we found that morphological and gene expression evidence of tooth initiation is eliminated in shha mutant embryos, and that morpholino antisense oligonucleotide knockdown of shha, but not shhb, function prevents mature tooth formation. Hedgehog pathway inhibition with the antagonist compound cyclopamine affected tooth formation at each stage in which we applied it: arresting development at early stages and disrupting mature tooth morphology when applied later. These results suggest that hedgehog signaling is required continuously during odontogenesis. In contrast, over-expression of shha had no effect on the developing dentition, possibly because shha is normally extensively expressed in the zebrafish pharyngeal region. Conclusion. We have identified previously unknown requirements for hedgehog signaling for early tooth initiation and later morphogenesis. The similarity of our results with data from mouse and other vertebrates suggests that despite gene duplication and changes in the location of where teeth form, the roles of hedgehog signaling in tooth development have been largely conserved during evolution. © 2010 Jackman et al; licensee BioMed Central Ltd.
Date: 2013-05-01
Creator: Joseph S Durgin
Access: Open access
- This paper explores the effects of patient travel distance on hospital profit margins, with consideration to the effects of travel subsidies on hospital pricing. We develop a model in which hospital agglomeration leads to a negative relationship between profit margins and patient travel distance, challenging the standard IO theory that profit margins are higher for firms with greater distances of customer travel. Using data on patient visits and hospital finances from the California Office of Statewide Health Planning and Development (OSHPD), we test our theory and confirm that a hospital tends to have less pricing power if it draws patients from beyond its local cluster. We then consider how our results might justify the subsidizing of patient travel by insurers and government payers. Lastly, we present an argument for why the ubiquitous Hirschman-Herfindahl index of market concentration can be robust to owner and system-level hospital cooperation.
Date: 2019-06-12
Creator: Yann Gibert, Eric Samarut, Megan K. Ellis, William R. Jackman, Vincent, Laudet
Access: Open access
- The diversity of teeth patterns in actinopterygians is impressive with tooth rows in many locations in the oral and pharyngeal regions. The first-formed tooth has been hypothesized to serve as an initiator controlling the formation of the subsequent teeth. In zebrafish, the existence of the first tooth (named 4 V1) is puzzling as its replacement is induced before the opening of the mouth. Functionally, it has been shown that 4 V1 formation requires fibroblast growth factor (FGF) and retinoic acid (RA) signalling. Here, we show that the ablation of 4 V1 prevents the development of the dental row demonstrating its dependency over it. If endogenous levels of FGF and RA are restored after 4 V1 ablation, embryonic dentition starts again by de novo formation of a first tooth, followed by the dental row. Similarly, induction of anterior ectopic teeth induces subsequent tooth formation, demonstrating that the initiator tooth is necessary and sufficient for dental row formation, probably via FGF ligands released by 4 V1 to induce the formation of subsequent teeth. Our results show that by modifying the formation of the initiator tooth it is possible to control the formation of a dental row. This could help to explain the diversity of tooth patterns observed in actinopterygians and more broadly, how diverse traits evolved through molecular fine-tuning.
Date: 2019-10-01
Creator: Belinda Kong
Access: Open access
- This essay deploys the concept of pandemic as a set of discursive relations rather than a neutral description of a natural phenomenon, arguing that pandemic discourse is a product of layered histories of power that in turn reproduces myriad forms of imperial and racial power in the new millennium. The essay aims to denaturalize the idea of infectious disease by reframing it as an assemblage of multiple histories of American geopower and biopower from the Cold War to the War on Terror. In particular, Asia and Asian bodies have been targeted by US discourses of infection and biosecurity as frontiers of bioterrorism and the diseased other. A contemporary example of this bioorientalism can be seen around the 2003 SARS epidemic, in which global discourses projected the source of contagion onto Asia and Asians. Pandemic as method can thus serve as a theoretical pathway for examining cultural concatenations of orientalism and biopower.
Date: 1974-01-01
Creator: Jim Nicholson
Access: Open access
- Catalog ; with an introducton by James E. Nicholson : "Post-contact art of the northwest coast"
Date: 2010-12-15
Creator: Yao Tang
Access: Open access
- Although real currency appreciations pose direct difficulties for exporters and import-competing firms as they will face more intense competition, is it possible that such competition spurs firms to improve productivity? To answer this question, the paper first constructs a theoretical model to show how the competitive pressures of currency appreciations induce firms to improve productivity by adopting new technologies. In addition, the model predicts that during appreciations there will be a positive relation between market concentration and improvements in productivity for industries highly exposed to trade, because the marginal benefits of productivity improvement will be bigger for firms with a larger market share. The paper then examines Canadian manufacturing data from 1997 to 2006, and finds evidence consistent with model predictions. I find that growth rates of labor productivity were on average higher during the Canadian dollar appreciation between 2002 and 2006, after controlling for industry characteristics. Within the group of highly traded Canadian industries, the more concentrated ones experienced larger growth in labor productivity.
Date: 1998-01-01
Creator: Laura B. Groves
Access: Open access
- Exhibit organized by Laura B. Groves.
Date: 2016-01-01
Creator: Ama Gyamerah
Access: Open access
Date: 1881-01-01
Access: Open access
Date: 2021-02-01
Creator: J. E. Rheuban, P. R. Gassett, D. C. McCorkle, C. W. Hunt, M., Liebman, C. Bastidas, K. O’Brien-Clayton, A. R. Pimenta, E. Silva, P. Vlahos, R. J. Woosley, J. Ries, C. M. Liberti, J. Grear, J. Salisbury, D. C. Brady, K. Guay, M. LaVigne, A. L. Strong, E. Stancioff, E. Turner
Access: Open access
- Comprehensive sampling of the carbonate system in estuaries and coastal waters can be difficult and expensive because of the complex and heterogeneous nature of near-shore environments. We show that sample collection by community science programs is a viable strategy for expanding estuarine carbonate system monitoring and prioritizing regions for more targeted assessment. ‘Shell Day’ was a single-day regional water monitoring event coordinating coastal carbonate chemistry observations by 59 community science programs and seven research institutions in the northeastern United States, in which 410 total alkalinity (TA) samples from 86 stations were collected. Field replicates collected at both low and high tides had a mean standard deviation between replicates of 3.6 ± 0.3 µmol kg (σ ± SE, n = 145) or 0.20 ± 0.02%. This level of precision demonstrates that with adequate protocols for sample collection, handling, storage, and analysis, community science programs are able to collect TA samples leading to high-quality analyses and data. Despite correlations between salinity, temperature, and TA observed at multiple spatial scales, empirical predictions of TA had relatively high root mean square error >48 µmol kg . Additionally, ten stations displayed tidal variability in TA that was not likely driven by low TA freshwater inputs. As such, TA cannot be predicted accurately from salinity using a single relationship across the northeastern US region, though predictions may be viable at more localized scales where consistent freshwater and seawater endmembers can be defined. There was a high degree of geographic heterogeneity in both mean and tidal variability in TA, and this single-day snapshot sampling identified three patterns driving variation in TA, with certain locations exhibiting increased risk of acidification. The success of Shell Day implies that similar community science based events could be conducted in other regions to not only expand understanding of the coastal carbonate system, but also provide a way to inventory monitoring assets, build partnerships with stakeholders, and expand education and outreach to a broader constituency. − 1 − 1 mean
Date: 2020-02-21
Creator: Daniel A. Williams, Kabita Pradhan, Ankita Paul, Ilana R. Olin, Owen T., Tuck, Karen D. Moulton, Suvarn S. Kulkarni, Danielle H. Dube
Access: Open access
- The bacterial cell wall is a quintessential drug target due to its critical role in colonization of the host, pathogen survival, and immune evasion. The dense cell wall glycocalyx contains distinctive monosaccharides that are absent from human cells, and proper assembly of monosaccharides into higher-order glycans is critical for bacterial fitness and pathogenesis. However, the systematic study and inhibition of bacterial glycosylation enzymes remains challenging. Bacteria produce glycans containing rare deoxy amino sugars refractory to traditional glycan analysis, complicating the study of bacterial glycans and the creation of glycosylation inhibitors. To ease the study of bacterial glycan function in the absence of detailed structural or enzyme information, we crafted metabolic inhibitors based on rare bacterial monosaccharide scaffolds. Metabolic inhibitors were assessed for their ability to interfere with glycan biosynthesis and fitness in pathogenic and symbiotic bacterial species. Three metabolic inhibitors led to dramatic structural and functional defects in Helicobacter pylori. Strikingly, these inhibitors acted in a bacteria-selective manner. These metabolic inhibitors will provide a platform for systematic study of bacterial glycosylation enzymes not currently possible with existing tools. Moreover, their selectivity will provide a pathway for the development of novel, narrow-spectrum antibiotics to treat infectious disease. Our inhibition approach is general and will expedite the identification of bacterial glycan biosynthesis inhibitors in a range of systems, expanding the glycochemistry toolkit.
Date: 2019-05-01
Creator: Andrew McGowan
Access: Open access
Date: 2013-04-01
Creator: Pornchai Kaewsapsak, Onyinyechi Esonu, Danielle H. Dube
Access: Open access
- Due to the increased prevalence of bacterial strains that are resistant to existing antibiotics, there is an urgent need for new antibacterial strategies. Bacterial glycans are an attractive target for new treatments, as they are frequently linked to pathogenesis and contain distinctive structures that are absent in humans. We set out to develop a novel targeting strategy based on surface glycans present on the gastric pathogen Helicobacter pylori (Hp). In this study, metabolic labeling of bacterial glycans with an azide-containing sugar allowed selective delivery of immune stimulants to azide-covered Hp. We established that Hp's surface glycans are labeled by treatment with the metabolic substrate peracetylated N-azidoacetylglucosamine (Ac4GlcNAz). By contrast, mammalian cells treated with Ac4GlcNAz exhibited no incorporation of the chemical label within extracellular glycans. We further demonstrated that the Staudinger ligation between azides and phosphines proceeds under acidic conditions with only a small loss of efficiency. We then targeted azide-covered Hp with phosphines conjugated to the immune stimulant 2,4-dinitrophenyl (DNP), a compound capable of directing a host immune response against these cells. Finally, we report that immune effector cells catalyze selective damage in vitro to DNP-covered Hp in the presence of anti-DNP antibodies. The technology reported herein represents a novel strategy to target Hp based on its glycans. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Date: 2021-02-24
Creator: Umakant Mishra, Gustaf Hugelius, Eitan Shelef, Yuanhe Yang, Jens, Strauss, Alexey Lupachev, Jennifer W. Harden, Julie D. Jastrow, Chien Lu Ping, William J. Riley, Edward A.G. Schuur, Roser Matamala, Matthias Siewert, Lucas E. Nave, Charles D. Koven, Matthias Fuchs
Access: Open access
- Large stocks of soil organic carbon (SOC) have accumulated in the Northern Hemisphere permafrost region, but their current amounts and future fate remain uncertain. By analyzing dataset combining >2700 soil profiles with environmental variables in a geospatial framework, we generated spatially explicit estimates of permafrost-region SOC stocks, quantified spatial heterogeneity, and identified key environmental predictors. We estimated that Pg C are stored in the top 3 m of permafrost region soils. The greatest uncertainties occurred in circumpolar toe-slope positions and in flat areas of the Tibetan region. We found that soil wetness index and elevation are the dominant topographic controllers and surface air temperature (circumpolar region) and precipitation (Tibetan region) are significant climatic controllers of SOC stocks. Our results provide first high-resolution geospatial assessment of permafrost region SOC stocks and their relationships with environmental factors, which are crucial for modeling the response of permafrost affected soils to changing climate.
Date: 2010-07-01
Creator: Anna Selmecki, Anja Forche, Judith Berman
Access: Open access
- The genomic plasticity of Candida albicans, a commensal and common opportunistic fungal pathogen, continues to reveal unexpected surprises. Once thought to be asexual, we now know that the organism can generate genetic diversity through several mechanisms, including mating between cells of the opposite or of the same mating type and by a parasexual reduction in chromosome number that can be accompanied by recombination events (2, 12, 14, 53, 77, 115). In addition, dramatic genome changes can appear quite rapidly in mitotic cells propagated in vitro as well as in vivo. The detection of aneuploidy in other fungal pathogens isolated directly from patients (145) and from environmental samples (71) suggests that variations in chromosome organization and copy number are a common mechanism used by pathogenic fungi to rapidly generate diversity in response to stressful growth conditions, including, but not limited to, antifungal drug exposure. Since cancer cells often become polyploid and/or aneuploid, some of the lessons learned from studies of genome plasticity in C. albicans may provide important insights into how these processes occur in higher-eukaryotic cells exposed to stresses such as anticancer drugs. © 2010, American Society for Microbiology.
Date: 2012-01-01
Creator: Stephen M. Majercik
Access: Open access
- Swarm intelligence can provide robust, adaptable, scalable solutions to difficult problems. The distributed nature of swarm activity is the basis of these desirable qualities, but it also prevents swarm-based techniques from having direct access to global knowledge that could facilitate the task at hand. Our experiments indicate that a swarm system can use an auxiliary swarm, called a communication swarm, to create and distribute an approximation of useful global knowledge, without sacrificing robustness, adaptability, and scalability. We describe a communication swarm and validate its effectiveness on a simple problem.
Date: 2017-07-14
Creator: Allison L. Dzubak, Jaron T. Krogel, Fernando A. Reboredo
Access: Open access
- The necessarily approximate evaluation of non-local pseudopotentials in diffusion Monte Carlo (DMC) introduces localization errors. We estimate these errors for two families of non-local pseudopotentials for the first-row transition metal atoms Sc-Zn using an extrapolation scheme and multideterminant wavefunctions. Sensitivities of the error in the DMC energies to the Jastrow factor are used to estimate the quality of two sets of pseudopotentials with respect to locality error reduction. The locality approximation and T-moves scheme are also compared for accuracy of total energies. After estimating the removal of the locality and T-moves errors, we present the range of fixed-node energies between a single determinant description and a full valence multideterminant complete active space expansion. The results for these pseudopotentials agree with previous findings that the locality approximation is less sensitive to changes in the Jastrow than T-moves yielding more accurate total energies, however not necessarily more accurate energy differences. For both the locality approximation and T-moves, we find decreasing Jastrow sensitivity moving left to right across the series Sc-Zn. The recently generated pseudopotentials of Krogel et al. [Phys. Rev. B 93, 075143 (2016)] reduce the magnitude of the locality error compared with the pseudopotentials of Burkatzki et al. [J. Chem. Phys. 129, 164115 (2008)] by an average estimated 40% using the locality approximation. The estimated locality error is equivalent for both sets of pseudopotentials when T-moves is used. For the Sc-Zn atomic series with these pseudopotentials, and using up to three-body Jastrow factors, our results suggest that the fixed-node error is dominant over the locality error when a single determinant is used.
Date: 2019-01-01
Creator: Bess Vlaisavljevich, Sondre K. Schnell, Allison L. Dzubak, Kyuho Lee, Nora, Planas, Jeffrey B. Neaton, Laura Gagliardi, Berend Smit
Access: Open access
- The authors regret that there are some discrepancies reproducing the data in the original article due to the determined coordinates not being the fully optimised geometries. The authors have provided more information as follows. In the manuscript entitled 'CO2 induced phase transitions in diamine-appended metal-organic frameworks', minor errors with the attached coordinates and energies reported in the paper have recently been identified. In this communication, we correct these errors. Here, we present updated optimized geometries and binding energies. We also take this opportunity to include an extended computational details section to ensure reproducibility. In addition, we show that the overall conclusions of the paper are not affected by these changes. A detailed comparison with the results reported by Lee et al.1 revealed that the DFT optimization of the coordinates provided with the manuscript do not lead to the values reported in the manuscript, and they warrant correction. Corrected coordinates and updated tables (Tables 1-7) and figures (Fig. 1, 2, 4 and 5) are included here for calculations using the PBE functional. These structures have been repeated using a slightly tighter force threshold than in the original manuscript (details below). The M06-L calculations reported in the original manuscript are not revisited since they were performed to assess the role of dispersion. Since the publication of our work in 2015, a far more detailed study of this effect has been published by one of the authors rendering these M06-L calculations unnecessary and we refer readers interested in the role of dispersion on the carbamate formation to this more recent study by Lee et al.1 In addition to correcting our DFT calculations, we examine the effects of the revised DFT values on the lattice model in this work.We recompute the lattice model with the M06-L and PBE values fromthe original manuscript as well as the corrected PBE values reported below (Fig. 6-8 and Tables 8-10). In all three sets of isotherm plots the ordering is preserved but the inflection points are spaced differently with the new PBE numbers, leading to quantitative differences that are nonetheless qualitatively similar to previous work. Finally, we discuss different ways that CO2 can coordinate to the metal binding site, as shown in Fig. 3. We should have notedmore clearly in ourmanuscript that these were starting configurations and not necessarily the final converged structures since our goal was to try several starting geometries to determine which coordination environment around the metal site was lowest in energy. Take for example bidentate insertion. Chemical intuition suggests that this structure could rotate to one that has only one CO2 oxygen center closer to the metal than the other and we observe this in our optimized structure. The resulting geometries we obtained for the starting arrangements noted in the figure are higher in energy than the chain model as reported in our original paper.We wish to emphasize that at the time of our 2015 study, our objective was to understand whether or not CO2 was bound to the metal and if one-dimensional chain formation could lead to a step in the adsorption isotherm. It has since become clear that a far more thorough study of the arrangements of the amines is required to truly understand competing amine arrangements preset in experiment. This was outside the scope of our work. Once more, these calculations are perhaps now outdated given work in the field in recent years. We again refer interested readers to a more recent study by Lee et al.1 1. Extended computational details to ensure reproducibility In the course of rectifying the error in our calculations, we wanted to ensure that all revised calculations were converged using the exact same protocol; therefore, we repeated the PBE calculations for the pair and chain models using updated computational details given here to ensure reproducibility. The M2(dobpdc) MOF contains six unsaturated metal sites per unit cell. To calculate the binding energies of CO2 in its amine appended analogue mmen-M2(dobpdc), one mmen ligand per CO2 was added per unit cell. The smaller sized ethylenediamine (en) was used to saturate the remaining amines not involved in CO2 binding. In the case of the pair mode, two mmen-amines are included per unit cell only. All DFT calculations were performed with periodic boundary conditions carried out using the VASP 5.4.4 package (original calculations were performed with VASP 5.3.3). The PBE functional was employed to examine the energetics of CO2 adsorption.3 On-site Hubbard U corrections were employed for metal d electrons.4 The U values are determined to reproduce oxidation energies in the respective metal oxides and are given in the tables below. The electron-ion interactions in these calculations were described with the projector augmented wave (PAW) method developed by Blöchl with an energy cutoff of 550 eV.5 This combination of the PBE functional, PAW scheme, and energy cutoff was used for full geometry optimization of the various species investigated until the forces on all atoms were smaller than 0.02 eV Å-1 and the SCF convergence was set to 1 × 10-7 eV. Given the large size of the unit cell and the tests with other numbers of K-points from the original study, only results obtained from G-point calculations are reported here. Finally, heats of adsorption are now reported below along with E + ZPE values, while in the original manuscript only E + ZPE were reported. No changes were made to how the vibrational corrections were computed; however, we have included some additional details to ensure reproducibility.6 Harmonic vibrational modes (ωi) were computed for CO2 in the gas phase and its bound product state (amine-CO2-MOF complex). The framework itself was taken to be rigid and only the vibrational modes associated with the motion of the amine, the metal center, first coordination sphere (oxygen atoms bound to the metal in the MOF backbone), and (if present) the bound CO2 were computed. Since the harmonic approximation breaks down for low frequency modes, we replaced all modes less than 50 cm-1 with 50 cm-1 when computing the zero-point and thermal energies. The following standard harmonic expressions were used to compute the vibrational corrections: Zero-point vibrational energy (ZPE) is: [Equation presented here] While for the bound product, the rotational and translational degrees of freedom of CO2 have been converted to additional vibrational modes allowing one to compute the thermal correction simply as: [Equation presented here] 2. Values for the chain model The chain model used in our original study included 1 mmen- and 5 en-amines. The values from the original paper are reported in Table 1. When we repeat these calculations using the procedure described in Section 1, we obtain the values in Table 2. In addition to the chain model described above (1 mmen- and 5 en-amines per unit cell), during our original study we performed calculations with another model that was not included in the manuscript since its values yielded results further from experiment. This model includes only 1 mmen-amine per unit cell (no other amines) and was used to test the assumption that the five enamines are indeed spectators with respect to the metal dependence of the binding energy. We present the results from this model in Table 3. In the original paper we noted that the energy and bond length trends are correlated and are consistent with the Irving-Williams series. This is no longer true for all metals under investigation, with Zn being an outlier. The results for Zn can be explained by more recent work.1 3. Values for the pair model The model used to compute the "pair" adsorption mechanisms included 2 mmen-amines and 0 en-amines. The values in the original paper are presented in Table 5. 4. Lattice model plots The lattice models to generate adsorption isotherms for these systems were run at one temperature (∼25 °C) using four different input parameters. First the M06-L and PBE values from the original paper were used once more as it has been some time since we have run the lattice model. Then the model is repeated with the new set of values from PBE. If we compare Fig. 7 and 8, the order is preserved, but the infliction points are spaced a bit differently. This is due to the scaling factor being constant and is something we scaled for each of the different systems as well. The slope is also a bit different, but not more then we should expect for this simple lattice model. Furthermore, we only ever aimed to reproduce the step and the order of the metals. Any finer details cannot be expected to be obtained from this model. The exact values used to compute the isotherms are given in the tables below. The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.
Date: 1881-01-01
Creator: Frederick Winslow
Access: Open access
- Catalogue from the Bowdoin College Museum of Art.
Date: 2019-12-01
Creator: Courtney M. Payne, Collin S. Roesler
Access: Open access
- Warm water intrusion into Arctic fjords is increasingly affecting polar ecosystems. This study investigated how Atlantic water intrusion and tidewater glacial melting impacted water mass formation and phytoplankton distribution in Kongsfjorden, Svalbard. Field data were collected over a 2-week period during the height of the melt season in August 2014 and were contextualized within an 18-year regional MODIS satellite record. Since 1998, intruding waters have warmed by 4–5.5 °C, which has prevented sea ice formation and changed the characteristics of fjord bottom waters. Modeled light fields suggest that suspended sediment in this glacial meltwater has reduced the euphotic zone close to the ice face, contributing to lower phytoplankton concentrations in both persistent and intermittently sediment-laden meltwater plumes. However, measurements collected close to terrestrially terminating glaciers indicate that turbidity is significantly lower in the meltwater plumes, resulting in deep euphotic zones and high phytoplankton concentrations. The results of this study support a three-part conceptual model of the effects of warm-water intrusion on water mass formation and primary production within 10 km of tidewater glaciers. Initially, warm water intrusion reduces sea ice coverage, which increases the euphotic depth and increases phytoplankton biomass. Warm water intrusions may also result in increased melting of tidewater glaciers, enhanced sediment release, reduction in euphotic depth and reduction in phytoplankton biomass. Ultimately, as tidewater glaciers retreat and become terrestrially terminating, the sediment load decreases, the euphotic zone again increases, and phytoplankton biomass increases.
Date: 2019-01-01
Creator: Kathleen James-Chakraborty, Pep Avilés, Claudia Tittel, Jill Pearlman
Access: Open access
Date: 2004-03-05
Access: Open access
- There are two volumes numbered 133. This is the second.
Date: 2001-03-02
Access: Open access
- There are two volumes numbered 132. This is the original.
Date: 2001-11-16
Access: Open access
- There are two volumes numbered 133. This is the original.