Showing 1701 - 1710 of 5709 Items
Date: 1994-01-01
Creator: C. L. Borders, John A. Broadwater, Paula A. Bekeny, Johanna E. Salmon, Ann S., Lee, Aimee M. Eldridge, Virginia B. Pett
Access: Open access
- We propose that arginine side chains often play a previously unappreciated general structural role in the maintenance of tertiary structure in proteins, wherein the positively charged guanidinium group forms multiple hydrogen bonds to backbone carbonyl oxygens. Using as a criterion for a “structural” arginine one that forms 4 or more hydrogen bonds to 3 or more backbone carbonyl oxygens, we have used molecular graphics to locate arginines of interest in 4 proteins: Arg 180 in Thermus thermophilus manganese superoxide dismutase, Arg 254 in human carbonic anhydrase II, Arg 31 in Streptomyces rubiginosus xylose isomerase, and Arg 313 in Rhodospirillum rubrum ribulose‐1,5‐bisphosphate carboxylase/oxygenase. Arg 180 helps to mold the active site channel of superoxide dismutase, whereas in each of the other enzymes the structural arginine is buried in the “mantle” (i.e., inside, but near the surface) of the protein interior well removed from the active site, where it makes 5 hydrogen bonds to 4 backbone carbonyl oxygens. Using a more relaxed criterion of 3 or more hydrogen bonds to 2 or more backbone carbonyl oxygens, arginines that play a potentially important structural role were found in yeast enolase, Bacillus stearothermophilus glyceraldehyde‐3‐phosphate dehydrogenase, bacteriophage T4 and human lysozymes, Enteromorpha prolifera plastocyanin, HIV‐1 protease, Trypanosoma brucei brucei and yeast triosephosphate isomerases, and Escherichia coli trp aporepressor (but not trp repressor or the trp repressor/operator complex). In addition to helping form the active site funnel in superoxide dismutase, the structural arginines found in this study play such diverse roles as stapling together 3 strands of backbone from different regions of the primary sequence, and tying α‐helix to α‐helix, βturn to β‐turn, and subunit to subunit. Copyright © 1994 The Protein Society
Date: 2020-10-01
Creator: Emily R. Oleisky, Meredith E. Stanhope, J. Joe Hull, Andrew E. Christie, Patsy S., Dickinson
Access: Open access
- The American lobster, Homarus americanus, cardiac neuromuscular system is controlled by the cardiac ganglion (CG), a central pattern generator consisting of four premotor and five motor neurons. Here, we show that the premotor and motor neurons can establish independent bursting patterns when decoupled by a physical ligature. We also show that mRNA encoding myosuppressin, a cardioactive neuropeptide, is produced within the CG. We thus asked whether myosuppressin modulates the decoupled premotor and motor neurons, and if so, how this modulation might underlie the role(s) that these neurons play in myosuppressin's effects on ganglionic output. Although myosuppressin exerted dose-dependent effects on burst frequency and duration in both premotor and motor neurons in the intact CG, its effects on the ligatured ganglion were more complex, with different effects and thresholds on the two types of neurons. These data suggest that the motor neurons are more important in determining the changes in frequency of the CG elicited by low concentrations of myosuppressin, whereas the premotor neurons have a greater impact on changes elicited in burst duration. A single putative myosuppressin receptor (MSR-I) was previously described from the Homarus nervous system. We identified four additional putative MSRs (MSR-II-V) and investigated their individual distributions in the CG premotor and motor neurons using RT-PCR. Transcripts for only three receptors (MSR-II-IV) were amplified from the CG. Potential differential distributions of the receptors were observed between the premotor and motor neurons; these differences may contribute to the distinct physiological responses of the two neuron types to myosuppressin. NEW & NOTEWORTHY Premotor and motor neurons of the Homarus americanus cardiac ganglion (CG) are normally electrically and chemically coupled, and generate rhythmic bursting that drives cardiac contractions; we show that they can establish independent bursting patterns when physically decoupled by a ligature. The neuropeptide myosuppressin modulates different aspects of the bursting pattern in these neuron types to determine the overall modulation of the intact CG. Differential distribution of myosuppressin receptors may underlie the observed responses to myosuppressin.
Date: 2023-01-01
Creator: Salina Chin
Access: Open access
- In popular discourse, understandings of queerness and religiosity as antithetical proliferate. However, the political involvement of Portland, Maine’s First Parish Unitarian-Universalist Church in Maine’s queer political movement points to a more complex relationship between the LGBTQ+ community and progressive religious institutions. Through participant observation, archival research, and semi-structured interviews with nine LGBTQ+ community members and informants, I reveal the crucial role of Portland’s First Parish Unitarian-Universalist Church in Maine’s queer political movement from the late 1980s into the present day. On the one hand, progressive faith-based spaces across Maine provide safe spaces for queer political organizing. On the other hand, “ephemeral placemaking” in progressive faith-based spaces represents an assimilationist political strategy that stresses LGBTQ+ respectability. Thus, I argue that queer placemaking in progressive faith-based spaces reflects both subversive and assimilationist politics. LGBTQ+ activists utilize ephemeral placemaking strategies within progressive faith-based spaces to challenge political opposition from the religious Right while also reinforcing what Mikulak (2019) terms “godly homonormativity”: the normalization of LGBTQ+ identity and the upholding of heteronormativity by emphasizing respectability and monogamy. My analysis of queer political organizing within progressive faith-based spaces “queers” religion and LGBTQ+ politics, disrupting dominant narratives of religion as homophobic and LGBTQ+ politics as radical.
Date: 2016-05-01
Creator: Katelyn J Suchyta
Access: Open access

- Embargo End Date: 2025-05-14
Date: 2020-01-01
Creator: Zachary C. LeBlanc
Access: Embargoed

Date: 2020-01-01
Creator: Leah B Kratochvil
Access: Access restricted to the Bowdoin Community
Date: 1999-06-01
Creator: Yves Balkanski, Patrick Monfray, Mark Battle, Martin Heimann
Access: Open access
- Recently, very precise measurements have detected the seasonal variability in the atmospheric O2/N2 ratio at several sites in the northern and southern hemispheres. In this paper, we derive marine primary productivity (PP) from satellite ocean color data. To infer air-sea oxygen fluxes, a simple one-dimensional diagnostic model of ocean biology has been developed that depends on only two parameters: a time delay between organic production and oxidation (set to 2 weeks) and an export scale length (50 m). This model gives a global net community production of 4.3 mol C m-2 yr-1 in the euphotic zone and 3.2 mol C m-2 yr-1 in the mixed layer. This last value corresponds to a global f ratio (net community production (NCP)/PP) at the base of the mixed layer of 0.37. The air-sea fluxes derived from this model are then used at the base of a three-dimensional atmospheric model to compare the atmospheric seasonal cycle of O2/N2 at five sites: Cape Grim (40.6S, 144.6E), Baring Head (41.3S, 174.8E), Mauna Loa (19.5N,154.8W), La Jolla (32.9N, 117.3W), and Barrow (71.3N, 156.6W). The agreement between model and observations is very encouraging. We infer from the agreement that the seasonal variations in O2/N2 are largely controlled by the photosynthesis rate but also by the remineralization linked to the deepening and shoaling of the mixed layer. Lateral ventilation to high latitudes may also be an important factor controlling the amplitude of the seasonal cycle.
Date: 2007-09-01
Creator: Benjamin R. Williams, Jack R. Bateman, Natasha D. Novikov, C. Ting Wu
Access: Open access
- Homolog pairing refers to the alignment and physical apposition of homologous chromosomal segments. Although commonly observed during meiosis, homolog pairing also occurs in nonmeiotic cells of several organisms, including humans and Drosophila. The mechanism underlying nonmeiotic pairing, however, remains largely unknown. Here, we explore the use of established Drosophila cell lines for the analysis of pairing in somatic cells. Using fluorescent in situ hybridization (FISH), we assayed pairing at nine regions scattered throughout the genome of Kc167 cells, observing high levels of homolog pairing at all six euchromatic regions assayed and variably lower levels in regions in or near centromeric heterochromatin. We have also observed extensive pairing in six additional cell lines representing different tissues of origin, different ploidies, and two different species, demonstrating homolog pairing in cell culture to be impervious to cell type or culture history. Furthermore, by sorting Kc167 cells into G1, S, and G2 subpopulations, we show that even progression through these stages of the cell cycle does not significantly change pairing levels. Finally, our data indicate that disrupting Drosophila topoisomerase II (Top2) gene function with RNAi and chemical inhibitors perturbs homolog pairing, suggesting Top2 to be a gene important for pairing. Copyright © 2007 by the Genetics Society of America.
Date: 1999-06-24
Creator: James H. Butler, Mark Battle, Michael L. Bender, Stephen A. Montzka, Andrew D., Clarke, Eric S. Saltzman, Cara M. Sucher, Jeffrey P. Severinghaus, James W. Elkins
Access: Open access
- Measurements of trace gases in air trapped in polar firn (unconsolidated snow) demonstrate that natural sources of chlorofluorocarbons, halons, persistent chlorocarbon solvents and sulphur hexafluoride to the atmosphere are minimal or non-existent. Atmospheric concentrations of these gases, reconstructed back to the late nineteenth century, are consistent with atmospheric histories derived from anthropogenic emission rates and known atmospheric lifetimes. The measurements confirm the predominance of human activity in the atmospheric budget of organic chlorine, and allow the estimation of atmospheric histories of halogenated gases of combined anthropogenic and natural origin. The pre-twentieth-century burden of methyl chloride was close to that at present, while the burden of methyl bromide was probably over half of today's value.
Date: 1942-01-01
Access: Open access
- Bowdoin College Bulletin no. 260