Showing 171 - 180 of 274 Items
Date: 2021-05-01
Creator: Bruce D. Kohorn, Frances D.H. Zorensky, Jacob Dexter-Meldrum, Salem Chabout, Gregory, Mouille, Susan Kohorn
Access: Open access
- Plant growth, morphogenesis and development involve cellular adhesion, a process dependent on the composition and structure of the extracellular matrix or cell wall. Pectin in the cell wall is thought to play an essential role in adhesion, and its modification and cleavage are suggested to be highly regulated so as to change adhesive properties. To increase our understanding of plant cell adhesion, a population of ethyl methanesulfonate-mutagenized Arabidopsis were screened for hypocotyl adhesion defects using the pectin binding dye Ruthenium Red that penetrates defective but not wild-type (WT) hypocotyl cell walls. Genomic sequencing was used to identify a mutant allele of ELMO1 which encodes a 20 kDa Golgi membrane protein that has no predicted enzymatic domains. ELMO1 colocalizes with several Golgi markers and elmo1-/- plants can be rescued by an ELMO1-GFP fusion. elmo1-/- exhibits reduced mannose content relative to WT but no other cell wall changes and can be rescued to WT phenotype by mutants in ESMERALDA1, which also suppresses other adhesion mutants. elmo1 describes a previously unidentified role for the ELMO1 protein in plant cell adhesion.
Date: 1998-04-01
Creator: Zheng Hui He, Deze He, Bruce D. Kohorn
Access: Open access
- Pathogen infection of angiosperms must rely on some interaction between the extracellular matrix (ECM) and the invading agent, and may be accompanied by signaling between the ECM and cytoplasm. An Arabidopsis cell wall associated receptor kinase (Wak1) has an amino-terminal domain that is tightly associated with the ECM, spans the plasma membrane and has a cytoplasmic protein kinase domain. Wak1 expression is induced when Arabidopsis plants are infected with pathogen, or when the pathogen response is stimulated either by exogenous salicylate (SA) or its analog 2,2-dichloroisonicotinic acid (INA). This Wak1 induction requires the positive regulator NPR1/NIM1. Thus Wak1 is a pathogen-related (PR) protein. Expression of an antisense and a dominant negative allele of Wak1 shows that induced expression of Wak1 is needed for a plant to survive if stimulated by INA. Ectopic expression of the entire Wak1, or the kinase domain alone, can provide resistance to otherwise lethal SA levels. These experiments suggest that Wak1 expression and other PR proteins are protecting plants from detrimental effects incurred during the pathogen response. These results provide a direct link between a protein kinase that could mediate signals from the ECM, to the events that are precipitated by a pathogen infection.
Date: 2012-01-01
Creator: Latoya Jones Braun, Aimee M. Eldridge, Jessica Cummiskey, Kelly K. Arthur, Deborah S., Wuttke
Access: Open access
- The purpose of this study was to probe the fate of a model antigen, a cysteine-free mutant of bacteriophage T4 lysozyme, to the level of fine structural detail, as a consequence of its interaction with an aluminum (Al)-containing adjuvant. Fluorescence spectroscopy and differential scanning calorimetry were used to compare the thermal stability of the protein in solution versus adsorbed onto an Al-containing adjuvant. Differences in accessible hydrophobic surface areas were investigated using an extrinsic fluorescence probe, 8-Anilino-1-naphthalenesulfonic acid (ANS). As has been observed with other model antigens, the apparent thermal stability of the protein decreased following adsorption onto the adjuvant. ANS spectra suggested that adsorption onto the adjuvant caused an increase in exposure of hydrophobic regions of the protein. Electrostatic interactions drove the adsorption, and disruption of these interactions with high ionic strength buffers facilitated the collection of two-dimensional 15N heteronuclear single quantum coherence nuclear magnetic resonance data of protein released from the adjuvant. Although the altered stability of the adsorbed protein suggested changes to the protein's structure, the fine structure of the desorbed protein was nearly identical to the protein's structure in the adjuvant-free formulation. Thus, the adjuvant-induced changes to the protein that were responsible for the reduced thermal stability were not observed upon desorption. © 2011 Wiley Periodicals, Inc.
Date: 1986-01-01
Creator: P. R. Chitnis, E. Harel, B. D. Kohorn, E. M. Tobin, J. P., Thornber
Access: Open access
- When the in vitro synthesized precursor of a light-harvesting chlorophyll a/b binding protein (LHCP) from Lemna gibba is imported into barley etiochloroplasts, it is processed to a single form. Both the processed form and the precursor are found in the thylakoid membranes, assembled into the light-harvesting complex of photosystem II. Neither form can be detected in the stromal fraction. The relative amounts of precursor and processed forms observed in the thylakoids are dependent on the developmental stage of the plastids used for uptake. The precursor as well as the processed form can also be detected in thylakoids of greening maize plastids used in similar uptake experiments. This detection of a precursor in the thylakoids, which has not been previously reported, could be a result of using rapidly developing plastids and/or using an heterologous system. Our results demonstrate that the extent of processing of LHCP precursor is not a prerequisite for its inclusion in the complex. They are also consistent with the possibility that the processing step can occur after insertion of the protein into the thylakoid membrane.
Date: 2008-11-01
Creator: Jack R. Bateman, C. Ting Wu
Access: Open access
- Studies from diverse organisms show that distinct interchromosomal interactions are associated with many developmental events. Despite recent advances in uncovering such phenomena, our understanding of how interchromosomal interactions are initiated and regulated is incomplete. During the maternal-to-zygotic transition (MZT) of Drosophila embryogenesis, stable interchromosomal contacts form between maternal and paternal homologous chromosomes, a phenomenon known as somatic homolog pairing. To better understand the events that initiate pairing, we performed a genomewide assessment of the zygotic contribution to this process. Specifically, we took advantage of the segregational properties of compound chromosomes to generate embryos lacking entire chromosome arms and, thus, all zygotic gene products derived from those arms. Using DNA fluorescence in situ hybridization (FISH) to assess the initiation of pairing at five separate loci, this approach allowed us to survey the entire zygotic genome using just a handful of crosses. Remarkably, we found no defect in pairing in embryos lacking any chromosome arm, indicating that no zygotic gene product is essential for pairing to initiate. From these data, we conclude that the initiation of pairing can occur independently of zygotic control and may therefore be part of the developmental program encoded by the maternal genome. Copyright © 2008 by the Genetics Society of America.
Date: 1998-01-01
Creator: Leigh Ann Lipscomb, Nadine C. Gassner, Sheila D. Snow, Aimee M. Eldridge, Walter A., Baase, Devin L. Drew, Brian W. Matthews
Access: Open access
- The substitution of methionines with leucines within the interior of a protein is expected to increase stability both because of a more favorable solvent transfer team as well as the reduced entropic cost of holding a leucine side chain in a defined position. Together, these two terms are expected to contribute about 1.4 kcal/mol to protein stability for each Met → Leu substitution when fully buried. At the same time, this expected beneficial effect may be offset by steric factors due to differences in the shape of leucine and methionine. To investigate the interplay between these factors, all methionines in T4 lysozyme except at the amino-terminus were individually replaced with leucine. Of these mutants, M106L and M120L have stabilities 0.5 kcal/mol higher than wild-type T4 lysozyme, while M6L is significantly destabilized (-2.8 kcal/mol). M102L, described previously, is also destabilized (-0.9 kcal/mol). Based on this limited sample it appears that methionine-to-leucine substitutions can increase protein stability but only in a situation where the methionine side chain is fully or partially buried, yet allows the introduction of the leucine without concomitant steric interference. The variants, together with methionine-to-lysine substitutions at the same sites, follow the general pattern that substitutions at rigid, internal sites tend to be most destabilizing, whereas replacements at more solvent-exposed sites are better tolerated.
Date: 2006-06-30
Creator: Jack R. Bateman, Anne M. Lee, C. Ting Wu
Access: Open access
- Position effects can complicate transgene analyses. This is especially true when comparing transgenes that have inserted randomly into different genomic positions and are therefore subject to varying position effects. Here, we introduce a method for the precise targeting of transgenic constructs to predetermined genomic sites in Drosophila using the φC31 integrase system in conjunction with recombinase-mediated cassette exchange (RMCE). We demonstrate the feasibility of this system using two donor cassettes, one carrying the yellow gene and the other carrying GFP. At all four genomic sites tested, we observed exchange of donor cassettes with an integrated target cassette carrying the mini-white gene. Furthermore, because RMCE-mediated integration of the donor cassette is necessarily accompanied by loss of the target cassette, we were able to identify integrants simply by the loss of mini-white eye color. Importantly, this feature of the technology will permit integration of unmarked constructs into Drosophila, even those lacking functional genes. Thus, φC31 integrase-mediated RMCE should greatly facilitate transgene analysis as well as permit new experimental designs. Copyright © 2006 by the Genetics Society of America.
Date: 1982-01-01
Creator: B. D. Kohorn, P. M.M. Rae
Access: Open access
- An extract of Drosophila melanogaster Kc cells is shown to give specific and accurate transcription of truncated segments of cloned D. melanogaster ribosomal DNA (rDNA). When clones are digested with restriction enzymes so that the initiation site is flanked by 0.3 kilobase (kb) of nontranscribed spacer and >0.4 kb of external transcribed spacer, RNA polymerase I activity in the extract parallels in vivo rRNA synthesis in selection of the coding strand of template and the site of transcription initiation. When >0.3 kb of the nontranscribed spacer is contiguous with transcribed spacer, in vitro initiations evidently also occur in repeated sequences adjacent to the site of in vivo initiation; when ≤0.4 kb of the external transcribed spacer is present in a segment, expected transcripts are heterogeneous in length or not detectable. Transcription in the cell-free system requires the specific addition of D. melanogaster rDNA: neither D. virilis rDNA, vector plasmid, nor clones of D. melanogaster genes that are transcribed in vivo by RNA polymerases II and III serve as templates in the system. Drosophila rDNA units that have an interruption in the 28S rRNA coding region are not transcribed in vivo, but restriction digests of a recombinant phage DNA that contains such a unit are active as template for in vitro rDNA transcription.
Date: 2008-12-01
Creator: Laura A. Henry, Vladimir Douhovnikoff
Access: Open access
- This review examines the literature available on the state of the environment and environmental protection in the Russian Federation. As the largest country on Earth, rich in natural resources and biodiversity, Russia's problems and policies have global consequences. Environmental quality and management are influenced by the legacy of Soviet economic planning and authoritarian governance, as well as by Russia's post-Soviet economic recession and current strategies of economic development. Russia achieved a reduction in some pollutants owing to the collapse of industrial production in the 1990s, but many environmental indicators suggest growing degradation. Russia has signed on to a number of international environmental agreements, but its record on implementation is mixed, and it discourages environmental activism. Scholarship on the Russian environment is a limited, but growing, field, constrained by challenges of data availability, yet it offers great potential for testing scientific and social scientific hypotheses. ©2008 by Annual Reviews.
Date: 2005-01-01
Creator: Richard S. Dodd, Daniel Hüberli, Vlad Douhovnikoff, Tamar Y. Harnik, Zara, Afzal-Rafii, Matteo Garbelotto
Access: Open access
- California coastal woodlands are suffering severe disease and mortality as a result of infection from Phytophthora ramorum. Quercus agrifolia is one of the major woodland species at risk. This study investigated within- and among-population variation in host susceptibility to inoculation with P. ramorum and compared this with population genetic structure using molecular markers. Susceptibility was assessed using a branch-cutting inoculation test. Trees were selected from seven natural populations in California. Amplified fragment length polymorphism molecular markers were analysed for all trees used in the trials. Lesion sizes varied quantitatively among individuals within populations, with up to an eightfold difference. There was little support for population differences in susceptibility. Molecular structure also showed a strong within-population, and weaker among-population, pattern of variation. Our data suggest that susceptibility of Q. agrifolia to P. ramorum is variable and is under the control of several gene loci. This variation exists within populations, so that less susceptible local genotypes may provide the gene pool for regeneration of woodlands where mortality is high. © New Phytologist (2004).