Showing 181 - 190 of 257 Items

Distinct or shared actions of peptide family isoforms: II. Multiple pyrokinins exert similar effects in the lobster stomatogastric nervous system

Date: 2015-09-01

Creator: Patsy S. Dickinson, Sienna C. Kurland, Xuan Qu, Brett O. Parker, Anirudh, Sreekrishnan, Molly A. Kwiatkowski, Alex H. Williams, Alexandra B. Ysasi, Andrew E. Christie

Access: Open access

Many neuropeptides are members of peptide families, with multiple structurally similar isoforms frequently found even within a single species. This raises the question of whether the individual peptides serve common or distinct functions. In the accompanying paper, we found high isoform specificity in the responses of the lobster (Homarus americanus) cardiac neuromuscular system to members of the pyrokinin peptide family: only one of five crustacean isoforms showed any bioactivity in the cardiac system. Because previous studies in other species had found little isoform specificity in pyrokinin actions, we examined the effects of the same five crustacean pyrokinins on the lobster stomatogastric nervous system (STNS). In contrast to our findings in the cardiac system, the effects of the five pyrokinin isoforms on the STNS were indistinguishable: they all activated or enhanced the gastric mill motor pattern, but did not alter the pyloric pattern. These results, in combination with those from the cardiac ganglion, suggest that members of a peptide family in the same species can be both isoform specific and highly promiscuous in their modulatory capacity. The mechanisms that underlie these differences in specificity have not yet been elucidated; one possible explanation, which has yet to be tested, is the presence and differential distribution of multiple receptors for members of this peptide family.


Miniature of Three Decades of Replicated Field Studies Reveal Eelgrass (<i>Zostera marina</i>) Inhibits Soft-shell Clam (<i>Mya arenaria</i>) Growth in Eastern Maine
Three Decades of Replicated Field Studies Reveal Eelgrass (Zostera marina) Inhibits Soft-shell Clam (Mya arenaria) Growth in Eastern Maine
This record is embargoed.
    • Embargo End Date: 2027-05-16

    Date: 2024-01-01

    Creator: Everett Horch

    Access: Embargoed



      Natural and experimental evolution of sexual conflict within Caenorhabditis nematodes

      Date: 2015-05-22

      Creator: Michael F. Palopoli, Colin Peden, Caitlin Woo, Ken Akiha, Megan, Ary, Lori Cruze, Jennifer L. Anderson, Patrick C. Phillips

      Access: Open access

      Background: Although males and females need one another in order to reproduce, they often have different reproductive interests, which can lead to conflict between the sexes. The intensity and frequency of male-male competition for fertilization opportunities is thought to be an important contributor to this conflict. The nematode genus Caenorhabditis provides an opportunity to test this hypothesis because the frequency of males varies widely among species with different mating systems. Results: We find evidence that there is strong inter- and intra-sexual conflict within C. remanei, a dioecious species composed of equal frequencies of males and females. In particular, some C. remanei males greatly reduce female lifespan following mating, and their sperm have a strong competitive advantage over the sperm of other males. In contrast, our results suggest that both types of conflict have been greatly reduced within C. elegans, which is an androdioecious species that is composed of self-fertilizing hermaphrodites and rare males. Using experimental evolution in mutant C. elegans populations in which sperm production is blocked in hermaphrodites (effectively converting them to females), we find that the consequences of sexual conflict observed within C. remanei evolve rapidly within C. elegans populations experiencing high levels of male-male competition. Conclusions: Together, these complementary data sets support the hypothesis that the intensity of intersexual conflict varies with the intensity of competition among males, and that male-induced collateral damage to mates can evolve very rapidly within populations.


      Miniature of Examining Functional Roles for Anthocyanins in Plant Leaves
      Examining Functional Roles for Anthocyanins in Plant Leaves
      Access to this record is restricted to members of the Bowdoin community. Log in here to view.

          Date: 2016-05-01

          Creator: Benjamin M West

          Access: Access restricted to the Bowdoin Community



            Functional redundancy of a non-native foundation species (eelgrass, Zostera japonica) across intertidal stress gradients

            Date: 2023-01-01

            Creator: S. Maria Garcia

            Access: Open access

            Non-native species foundation species can alter ecosystems in both positive and negative ways. The creation of habitat can be beneficial to native species when they provide a limiting resource or in a stressful environment. Yet this creation of habitat can also be detrimental by replacing native species and/or facilitating the presence of more non-native species. In Willapa Bay, WA, a non-native foundation species, Zostera japonica, co-exists with the native foundation species Zostera marina. Zostera japonica persists at the higher intertidal in monocultures, the two species overlap in the mid intertidal, and Z. marina persists in monocultures in the low intertidal. Epifaunal invertebrates, the organisms that live on eelgrass blades, connect eelgrass to higher trophic levels. Through a series of transplants and removals, I used this zonation pattern to ask if the two species can fulfill a similar functional role in respect to epifaunal invertebrates (functional redundancy), and if this was due to the identity of the foundation species or a response to the stress gradient of the intertidal. My results suggest that the epifaunal invertebrate community is responding more to the physiological stress gradient, and the functional redundancy of the two species depends on the location they are found. Z. japonica is expanding the range of vegetated habitat into to the physiologically stressful high zone, which supports a different community. This experiment highlights that the impacts of non- native species are highly localized and that abiotic and biotic factors are important to trophic interactions.


            Homolog Pairing at the Push of a Button

            Date: 2019-11-04

            Creator: Jack R. Bateman, Judith A. Kassis

            Access: Open access

            Homologous chromosomes pair in somatic cells in Drosophila, but how this occurs is poorly understood. In this issue of Developmental Cell, Viets et al. (2019) show that proteins and chromatin structure mediate pairing and argue against a DNA sequence-based mechanism.


            Risks of multimodal signaling: Bat predators attend to dynamic motion in frog sexual displays

            Date: 2014-09-01

            Creator: Wouter Halfwerk, Marjorie M. Dixon, Kristina J. Ottens, Ryan C. Taylor, Michael J., Ryan, Rachel A. Page, Patricia L. Jones

            Access: Open access

            Many sexual displays contain multiple components that are received through a variety of sensory modalities. Primary and secondary signal components can interact to induce novel receiver responses and become targets of sexual selection as complex signals. However, predators can also use these complex signals for prey assessment, which may limit the evolution of elaborate sexual signals. We tested whether a multimodal sexual display of the male túngara frog (Physalaemus pustulosus) increases predation risk from the fringe-lipped bat (Trachops cirrhosus) when compared with a unimodal display. We gave bats a choice to attack one of two frog models: a model with a vocal sac moving in synchrony with a mating call (multisensory cue), or a control model with the call but no vocal sac movement (unimodal cue). Bats preferred to attack the model associated with the multimodal display. Furthermore, we determined that bats perceive the vocal sac using echolocation rather than visual cues. Our data illustrate the costs associated with multimodal signaling and that sexual and natural selection pressures on the same trait are not always mediated through the same sensory modalities. These data are important when considering the role of environmental fluctuations on signal evolution as different sensory modalities will be differentially affected.


            Erratum: Context-dependent protein stabilization by methionine-to- leucine substitution shown in T4 lysozyme (Protein Science (November 3, 1998) 7:3 (772))

            Date: 1998-01-01

            Creator: L. A. Lipscomb, N. C. Gassner, S. D. Snow, A. M. Eldridge, W. A., Baase, D. L. Drew, B. W. Matthews

            Access: Open access



            Mitochondrial genotype influences the response to cold stress in the European green crab, Carcinus maenas

            Date: 2019-01-01

            Creator: Aidan F. Coyle, Erin R. Voss, Carolyn K. Tepolt, David B. Carlon

            Access: Open access

            Hybrid zones provide natural experiments in recombination within and between genomes that may have strong effects on organismal fitness. On the East Coast of North America, two distinct lineages of the European green crab (Carcinus maenas) have been introduced in the last two centuries. These two lineages with putatively different adaptive properties have hybridized along the coast of the eastern Gulf of Maine, producing new nuclear and mitochondrial combinations that show clinal variation correlated with water temperature. To test the hypothesis that mitochondrial or nuclear genes have effects on thermal tolerance, we first measured the response to cold stress in crabs collected throughout the hybrid zone, then sequenced the mitochondrial CO1 gene and two nuclear single nucleotide polymorphisms (SNPs) representative of nuclear genetic lineage. Mitochondrial haplotype had a strong association with the ability of crabs to right themselves at 4.5°C that was sex specific: haplotypes originally from northern Europe gave male crabs an advantage while there was no haplotype effect on righting in female crabs. By contrast, the two nuclear SNPs that were significant outliers in a comparison between northern and southern C. maenas populations had no effect on righting response at low temperature. These results add C. maenas to the shortlist of ectotherms in which mitochondrial variation has been shown to affect thermal tolerance, and suggest that natural selection is shaping the structure of the hybrid zone across the Gulf of Maine. Our limited genomic sampling does not eliminate the strong possibility that mito-nuclear co-adaptation may play a role in the differences in thermal phenotypes documented here. Linkage between mitochondrial genotype and thermal tolerance suggests a role for local adaptation in promoting the spread of invasive populations of C. maenas around the world.


            SR-Like RNA-binding protein Slr1 affects Candida albicans filamentation and virulence

            Date: 2013-04-01

            Creator: Chaiyaboot Ariyachet, Norma V. Solis, Yaoping Liu, Nemani V. Prasadarao, Scott G., Filler, Anne E. McBride

            Access: Open access

            Candida albicans causes both mucosal and disseminated infections, and its capacity to grow as both yeast and hyphae is a key virulence factor. Hyphal formation is a type of polarized growth, and members of the SR (serine-arginine) family of RNA-binding proteins influence polarized growth of both Saccharomyces cerevisiae and Aspergillus nidulans. Therefore, we investigated whether SR-like proteins affect filamentous growth and virulence of C. albicans. BLAST searches with S. cerevisiae SR-like protein Npl3 (ScNpl3) identified two C. albicans proteins: CaNpl3, an apparent ScNpl3 ortholog, and Slr1, another SR-like RNAbinding protein with no close S. cerevisiae ortholog. Whereas ScNpl3 was critical for growth, deletion of NPL3 in C. albicans resulted in few phenotypic changes. In contrast, the slr1δ/δ mutant had a reduced growth rate in vitro, decreased filamentation, and impaired capacity to damage epithelial and endothelial cells in vitro. Mice infected intravenously with the slr1δ/δ mutant strain had significantly prolonged survival compared to that of mice infected with the wild-type or slr1δ/δ mutant complemented with SLR1 (slr1δ/δ+SLR1) strain, without a concomitant decrease in kidney fungal burden. Histopathology, however, revealed differential localization of slr1δ/δ hyphal and yeast morphologies within the kidney. Mice infected with slr1δ/δ cells also had an increased brain fungal burden, which correlated with increased invasion of brain, but not umbilical vein, endothelial cells in vitro. The enhanced brain endothelial cell invasion was likely due to the increased surface exposure of the Als3 adhesin on slr1δ/δ cells. Our results indicate that Slr1 is an SR-like protein that influences C. albicans growth, filamentation, host cell interactions, and virulence. © 2013, American Society for Microbiology.