Showing 11 - 20 of 63 Items

Investigating the Effect of Side Chains with Hydrogen Bonding Capabilities on Peptoid Catalysts for Enantioselective Trifluoromethylation of 4-Chlorobenzaldehyde Access to this record is restricted to members of the Bowdoin community. Log in here to view.
- Restriction End Date: 2025-06-01
Date: 2020-01-01
Creator: Rebecca Londoner
Access: Access restricted to the Bowdoin Community

Exploring sex-specific and developmental outcomes of early life adversity on DNA methylation in parvalbumin-containing interneurons Access to this record is restricted to members of the Bowdoin community. Log in here to view.
Date: 2023-01-01
Creator: Emma Straw Noel
Access: Access restricted to the Bowdoin Community
Antimicrobial Peptides (AMPs) in the Lobster, Homarus Americanus: Isolation and Activity
Date: 2021-01-01
Creator: Ruby Chimereucheya Ahaiwe
Access: Open access
- The American lobster Homarus americanus uses its innate immune system for protection against foreign bodies and diseases. Hemocytes in the innate immune system are responsible for the rapid and effective cellular response against pathogens and infections observed in lobsters. These hemocytes, particularly semi-granulocytes and granulocytes, store antimicrobial peptides (AMPs) which specifically target and destroy microbes. Hemocyte samples from the American lobster Homarus americanus hemolymph or circulatory fluid, mixed and fractionated into separated semi-granular and granular cell samples, were analyzed for possible AMP presence. A defensin AMP, Hoa-D1, (SYVRSCSSNGGDCVYRCYGNIINGACSGSRVCCRSGGGYamide; with C representing a cysteine participating in a disulfide bond) was successfully isolated and identified by mass using reversed-phase high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS/MS). Preliminary results also show the defensin AMP to be concentrated in the semi-granulocytes and granulocytes.Hoa-D1 was isolated via HPLC fractionation. Isolated Hoa-D1 and semi-granular and granular hemocyte extracts were tested for bioactivity against the gram-negative bacteria, Escherichia coli, using the Kirby-Bauer disk diffusion assay. The assay did not show any activity, an outcome attributed to concentrations of the AMP that were too low to have any antimicrobial effect on E. coli. Subsequent work on this study should involve increasing the concentration of Hoa-D1 in test samples. Studying function of AMPs in the American lobster can provide more information on the depth of their cellular immune responses in other crustaceans, and possibly contribute to the development of novel antibiotics for treating diseases in humans.

Identification and characterization of genes involved in Helicobacter pylori lipopolysaccharide and glycoprotein biosynthesis Access to this record is restricted to members of the Bowdoin community. Log in here to view.
Date: 2021-01-01
Creator: Andrew James Mulholland
Access: Access restricted to the Bowdoin Community

Wnt Signaling is Dispensable to Formation of the First Tooth in D. Rerio This record is embargoed.
- Embargo End Date: 2025-05-14
Date: 2020-01-01
Creator: Zachary C. LeBlanc
Access: Embargoed
Characterization of O-Linked Glycosylated Neuropeptides in the American Lobster (Homarus americanus): The Use of Peptide Labeling Following Beta Elimination
Date: 2020-01-01
Creator: Edward Myron Bull
Access: Open access
- Neuropeptides are a class of small peptides that govern various neurological functions, and the American lobster (Homarus americanus) provides a model system for their characterization. Neuropeptides are commonly post-translationally modified (PTM), and one common PTM is glycosylation. Past research in the Stemmler lab has found glycosylated neuropeptides in H. americanus; however, the extent and biological role of this modification has not been well characterized. This study was undertaken to determine the number of glycosylated peptides in the sinus glands of H. americanus and to develop an approach to tag the site of glycosylation using beta-elimination chemistry. LC-MS paired with high pH reverse phase fractionation was used to survey for glycosylated neuropeptides and beta elimination with an amine tag was used as an approach to characterize the site of glycosylation. Our results indicate that high pH fractionation is a useful approach to simplify complex mixtures of neuropeptides and improve glycopeptide detection. Efforts to use beta elimination and tagging to characterize glycosylated neuropeptides have been less successful. Beta elimination of full length peptides resulted in peptide degradation. An approach utilizing chymotrypsin to reduce peptide size coupled with beta elimination and labeling with 2-dimethylaminoethanethiol showed less evidence for degradation, and this approach yielded data isolating two potential serine residues for the site of glycosylation; however, the data was not sufficient to distinguish the two sites. Work to optimize reaction conditions using a glycopeptide standard showed that multiple isomeric products were formed during beta elimination. With the goal of optimizing reaction conditions, future work will further examine reaction kinetics to eventually apply the approach to the entire sinus gland

Fluorescent Sugar Analogs as Probes for Bacterial Monosaccharide Uptake Access to this record is restricted to members of the Bowdoin community. Log in here to view.
Date: 2024-01-01
Creator: Foje-Geh Robert Tendoh
Access: Access restricted to the Bowdoin Community
Semaphorin-Induced Plasticity in the Nervous System of the Cricket, Gryllus bimaculatus
Date: 2021-01-01
Creator: Alicia G. Edwards
Access: Open access
- The adult auditory system of the cricket, Gryllus bimaculatus, exhibits a rare example of neuronal plasticity. Upon deafferentation, we observe medial dendrites that normally respect the midline of the PTG in the central nervous system sprouting across the boundary and forming synaptic connections with the contralateral auditory afferents. The Horch Lab has investigated key molecular factors that might play a causal role in this paradigm. Specifically, the protein Sema1a.2 comes from a guidance molecule family and has a role in developmental neuronal plasticity in other organisms. In this study, I explored the role of Sema1a.2 in the neuronal plasticity of the adult auditory system of the cricket by conducting a series of dsRNA knockdown experiments targeting Sema1a.2 followed by backfill procedures in which we iontophoresed dye into the Ascending Neurons (ANs) to visualize the anatomical effects of the knockdown experiments using confocal microscopy. We found that there were no significant differences between animals injected with dsRNA against GFP and Sema1a.2 volume, with respect to qualitative and quantitative data. However, we believe with an increase in cohort size, the trends observed, particularly the effect of Sema1a.2 knockdowns on CWM and CBM volumes, will become more pronounced and significant. Potential future pathways could include conducting double knockdowns of Sema1a.2 and Sema2a to observe if these two proteins are working together to create a more obvious effect on midline crossing and branching. Other options also include looking into other protein families that might be the causing factor in this rare phenomenon (toll-like receptors).

Antimicrobial Compounds in the Lobster, Homarus americanus: An Investigation of Lobster Shell Extracts This record is embargoed.
- Embargo End Date: 2027-05-19
Date: 2022-01-01
Creator: Usira Ahmed Ali
Access: Embargoed
Synthesis of N-Heterocyclic Carbene Complexes of Coinage Metals and Their Application in the Activation of Hydrogen
Date: 2024-01-01
Creator: Maryam Akramova
Access: Open access
- The main cause of the ongoing global climate crisis is the emission of greenhouse gases, and current climate reports emphasize the need to transition to low-emission renewable energy sources. Urgently needed are methods for storing renewable energy, such as synthetic fuels like hydrogen (H2) gas; however, a challenge to the widespread implementation of hydrogen fuel is its low volumetric energy density. This thesis describes an effort to synthesize a catalyst that takes advantage of hard-soft acid-base (HSAB) mismatches to activate H2 and facilitate its reaction with CO2 to form hydrocarbon fuels, thereby providing a sustainable means of storing renewable energy in high-density carbon-neutral fuels. The catalyst design features an exceptionally bulky N-heterocyclic carbene (NHC) ligand known as IPr** (3-Bis[2,6-bis[bis(4-tert-butylphenyl)methyl]-4-methylphenyl]-1H-imidazol-3-ium chloride), a coinage metal acting as a soft acid, and a hard base such as an alkoxide ion. Herein is reported a modified synthetic route of IPr**, along with its metalation with silver, and preliminary results of the addition of an alkoxide base. The ligand and its complex with silver are structurally characterized by nuclear magnetic resonance (NMR) spectroscopy. Further work is needed to complete the characterization of IPr**-supported HSAB mismatch complexes and investigate their potential to activate H2.