Showing 11 - 20 of 257 Items
Date: 2021-01-01
Creator: Barry Logan
Access: Open access
Date: 1983-01-01
Creator: B. D. Kohorn, P. M.M. Rae
Access: Open access
Date: 1991-07-01
Creator: David L. Murray, Bruce D. Kohorn
Access: Open access
Date: 2020-03-01
Creator: Zoe M. Wood, Patricia L. Jones
Access: Open access
- Philaenus spumarius (Meadow Spittlebug, Homoptera: Cercopoidea) is a cosmopolitan generalist insect that feeds on a wide repertoire of host plants in the field. We studied density and growth of Meadow Spittlebugs on a range of host plants on Kent Island, a boreal island in the Bay of Fundy, NB, Canada. The highest spittlebug densities were on Cirsium arvense (Canadian Thistle), although spittlebugs had larger body sizes on Solidago rugosa (Rough-stemmed Goldenrod) and Anaphalis margaritacea (Pearly Everlasting). We fertilized plots of Rough-stemmed Goldenrod in the field over 3 weeks to examine the effects of plant quality on development of Meadow Spittlebugs. Following fertilization, there were fewer nymphs present in fertilized plots than in unfertilized plots, indicating faster nymph maturation to adulthood on fertilized plants. This study offers an initial report of the host plants used by Meadow Spittlebugs in northeastern boreal habitat, variation in density and performance of the species on a range of host plants, and the effects of plant fertilization on spittlebug life history.
Date: 1993-01-01
Creator: A. S. Johnson, K. P. Sebens
Access: Open access
- Per polyp feeding rate was independent of the horizontal planform area of colonies. At the lowest velocities, most particles were captured on the upstream edge or in the middle of colonies, but all positional bias in capture rate disappeared at higher velocities. Particle capture and increasing flow speed were negatively associated. There were small, but measurable, differences in mean tentacle length between corals feeding at different velocities. Velocity-dependent feeding rate at most velocities was thus related to changes in flow rather than to changes in feeding behavior. Experiments in which corals were turned upside down revealed that the increased capture rate for rightside-up corals feeding at low velocity could be almost entirely accounted for by gravitational deposition of particles on the corals' tentacles. The tentacles form a canopy within which water movement was slowed, possibly facilitating gravitational deposition of non-buoyant or sinking food particles. -from Authors
Date: 1994-01-01
Creator: C. L. Borders, John A. Broadwater, Paula A. Bekeny, Johanna E. Salmon, Ann S., Lee, Aimee M. Eldridge, Virginia B. Pett
Access: Open access
- We propose that arginine side chains often play a previously unappreciated general structural role in the maintenance of tertiary structure in proteins, wherein the positively charged guanidinium group forms multiple hydrogen bonds to backbone carbonyl oxygens. Using as a criterion for a “structural” arginine one that forms 4 or more hydrogen bonds to 3 or more backbone carbonyl oxygens, we have used molecular graphics to locate arginines of interest in 4 proteins: Arg 180 in Thermus thermophilus manganese superoxide dismutase, Arg 254 in human carbonic anhydrase II, Arg 31 in Streptomyces rubiginosus xylose isomerase, and Arg 313 in Rhodospirillum rubrum ribulose‐1,5‐bisphosphate carboxylase/oxygenase. Arg 180 helps to mold the active site channel of superoxide dismutase, whereas in each of the other enzymes the structural arginine is buried in the “mantle” (i.e., inside, but near the surface) of the protein interior well removed from the active site, where it makes 5 hydrogen bonds to 4 backbone carbonyl oxygens. Using a more relaxed criterion of 3 or more hydrogen bonds to 2 or more backbone carbonyl oxygens, arginines that play a potentially important structural role were found in yeast enolase, Bacillus stearothermophilus glyceraldehyde‐3‐phosphate dehydrogenase, bacteriophage T4 and human lysozymes, Enteromorpha prolifera plastocyanin, HIV‐1 protease, Trypanosoma brucei brucei and yeast triosephosphate isomerases, and Escherichia coli trp aporepressor (but not trp repressor or the trp repressor/operator complex). In addition to helping form the active site funnel in superoxide dismutase, the structural arginines found in this study play such diverse roles as stapling together 3 strands of backbone from different regions of the primary sequence, and tying α‐helix to α‐helix, βturn to β‐turn, and subunit to subunit. Copyright © 1994 The Protein Society
Date: 2020-10-01
Creator: Emily R. Oleisky, Meredith E. Stanhope, J. Joe Hull, Andrew E. Christie, Patsy S., Dickinson
Access: Open access
- The American lobster, Homarus americanus, cardiac neuromuscular system is controlled by the cardiac ganglion (CG), a central pattern generator consisting of four premotor and five motor neurons. Here, we show that the premotor and motor neurons can establish independent bursting patterns when decoupled by a physical ligature. We also show that mRNA encoding myosuppressin, a cardioactive neuropeptide, is produced within the CG. We thus asked whether myosuppressin modulates the decoupled premotor and motor neurons, and if so, how this modulation might underlie the role(s) that these neurons play in myosuppressin's effects on ganglionic output. Although myosuppressin exerted dose-dependent effects on burst frequency and duration in both premotor and motor neurons in the intact CG, its effects on the ligatured ganglion were more complex, with different effects and thresholds on the two types of neurons. These data suggest that the motor neurons are more important in determining the changes in frequency of the CG elicited by low concentrations of myosuppressin, whereas the premotor neurons have a greater impact on changes elicited in burst duration. A single putative myosuppressin receptor (MSR-I) was previously described from the Homarus nervous system. We identified four additional putative MSRs (MSR-II-V) and investigated their individual distributions in the CG premotor and motor neurons using RT-PCR. Transcripts for only three receptors (MSR-II-IV) were amplified from the CG. Potential differential distributions of the receptors were observed between the premotor and motor neurons; these differences may contribute to the distinct physiological responses of the two neuron types to myosuppressin. NEW & NOTEWORTHY Premotor and motor neurons of the Homarus americanus cardiac ganglion (CG) are normally electrically and chemically coupled, and generate rhythmic bursting that drives cardiac contractions; we show that they can establish independent bursting patterns when physically decoupled by a ligature. The neuropeptide myosuppressin modulates different aspects of the bursting pattern in these neuron types to determine the overall modulation of the intact CG. Differential distribution of myosuppressin receptors may underlie the observed responses to myosuppressin.
Date: 2007-09-01
Creator: Benjamin R. Williams, Jack R. Bateman, Natasha D. Novikov, C. Ting Wu
Access: Open access
- Homolog pairing refers to the alignment and physical apposition of homologous chromosomal segments. Although commonly observed during meiosis, homolog pairing also occurs in nonmeiotic cells of several organisms, including humans and Drosophila. The mechanism underlying nonmeiotic pairing, however, remains largely unknown. Here, we explore the use of established Drosophila cell lines for the analysis of pairing in somatic cells. Using fluorescent in situ hybridization (FISH), we assayed pairing at nine regions scattered throughout the genome of Kc167 cells, observing high levels of homolog pairing at all six euchromatic regions assayed and variably lower levels in regions in or near centromeric heterochromatin. We have also observed extensive pairing in six additional cell lines representing different tissues of origin, different ploidies, and two different species, demonstrating homolog pairing in cell culture to be impervious to cell type or culture history. Furthermore, by sorting Kc167 cells into G1, S, and G2 subpopulations, we show that even progression through these stages of the cell cycle does not significantly change pairing levels. Finally, our data indicate that disrupting Drosophila topoisomerase II (Top2) gene function with RNAi and chemical inhibitors perturbs homolog pairing, suggesting Top2 to be a gene important for pairing. Copyright © 2007 by the Genetics Society of America.
Date: 2014-09-01
Creator: Vladimir Douhovnikoff, Eric L.G. Hazelton
Access: Open access
- Premise of the study: The characteristics of clonal growth that are advantageous in invasive plants can also result in native plants’ ability to resist invasion. In Maine, we compared the clonal architecture and diversity of an invasive lineage (introduced Phragmites) and a noninvasive lineage (native Phragmites) present in much of North America. This study is the fi rst on standscale diversity using a sample size and systematic spatial-sampling scheme adequate for characterizing clonal structure in Phragmites. Our questions included: (1) Does the structure and extent of clonal growth suggest that the potential for clonal growth contributes to the invasiveness of the introduced lineage? (2) Is clonal growth common in the native lineage, acting as a possible source of ecological resistance and resilience?
Date: 2010-11-01
Creator: Vladimir Douhovnikoff, Gregory R. Goldsmith, Ken D. Tape, Cherrie Huang, Nadine, Sur, M. Syndonia Bret-Harte
Access: Open access
- Rapid climate change in arctic environments is leading to a widespread expansion in woody deciduous shrub populations. However, little is known about the reproductive, dispersal, and establishment mechanisms associated with shrub expansion. It is assumed that harsh environmental conditions impose limitations on plant sexual reproduction in the Arctic, such that population survival and expansion is predominately a function of clonal recruitment. We present contrary evidence from microsatellite genetic data suggesting the prevalence of recruitment by seed. Further, we present a conceptual model describing modes of recruitment in relation to the abiotic environment. Climate change may be alleviating abiotic stress so that resources are available for more frequent recruitment by seed. Such changes have widespread implications for ecosystem structure and functioning, including species composition, wildlife habitat, biogeochemical cycling, and surface energy balance. © 2010 Regents of the University of Colorado.