Showing 201 - 210 of 257 Items

Hydrophobic core but not amino-terminal charged residues are required for translocation of an integral thylakoid membrane protein in vivo

Date: 1996-10-07

Creator: Benoit Baillet, Bruce D. Kohorn

Access: Open access

The integral membrane protein cytochrome f contains an amino-terminal signal sequence that is required for translocation into the thylakoid membrane. The signal sequence contains a hydrophobic core neighbored by an amino-terminal charged residue. Mutations that introduce charged amino acids into the hydrophobic core are inhibitory to cytochrome f translocation, and thus render cells non-photosynthetic. We have isolated both nuclear and chloroplast suppressors of these mutations by selecting for restoration of photosynthetic growth of Chlamydomonas. Here we describe the characterization of two chloroplast, second site suppressor mutations. Both suppressors remove the positively charged amino acid that borders the amino terminus of the hydrophobic core, and replace this arginine with either a cysteine or a leucine. The existence of these suppressors suggests that the hydrophobic core can be shifted in position within the signal sequence, and analysis of triple mutants in the signal confirms this hypothesis. Thus this signal that mediates translocation into the thylakoid membrane is characterized by a hydrophobic region whose exact amino acid content is not critical, and that need not be flanked on its amino terminus by a charged residue.


Captured segment exchange: A strategy for custom engineering large genomic regions in Drosophila melanogaster

Date: 2013-04-24

Creator: Jack R. Bateman, Michael F. Palopoli, Sarah T. Dale, Jennifer E. Stauffer, Anita L., Shah, Justine E. Johnson, Conor W. Walsh, Hanna Flaten, Christine M. Parsons

Access: Open access

Site-specific recombinases (SSRs) are valuable tools for manipulating genomes. In Drosophila, thousands of transgenic insertions carrying SSR recognition sites have been distributed throughout the genome by several large-scale projects. Here we describe a method with the potential to use these insertions to make custom alterations to the Drosophila genome in vivo. Specifically, by employing recombineering techniques and a dual recombinase-mediated cassette exchange strategy based on the phiC31 integrase and FLP recombinase, we show that a large genomic segment that lies between two SSR recognition-site insertions can be "captured" as a target cassette and exchanged for a sequence that was engineered in bacterial cells. We demonstrate this approach by targeting a 50-kb segment spanning the tsh gene, replacing the existing segment with corresponding recombineered sequences through simple and efficient manipulations. Given the high density of SSR recognition-site insertions in Drosophila, our method affords a straightforward and highly efficient approach to explore gene function in situ for a substantial portion of the Drosophila genome. © 2013 by the Genetics Society of America.


Resistance to dislodgement: habitat and size-specific differences in morphology and tenacity in an intertidal snail

Date: 1993-01-01

Creator: G. C. Trussell, A. S. Johnson, S. G. Rudolph, E. S. Gilfillan

Access: Open access

The authors quantified 1) shell size (defined as the maximum projected surface area, MPSA); 2) shell shape; 3) foot area; 4) maximum force to dislodge a snail in shear; and 5) tenacity (force per foot area required to dislodge) of the herbivorous Littorina obtusata. Wave-exposed snails were smaller (lower average MPSA), and were shorter and had larger foot area and greater dislodgement force than did protected snails of similar MPSA. The greater dislodgement force at the exposed site was due to larger foot area, not to greater tenacity. -from Authors


Isolation of nine microsatellite loci in Dolichogenidea homoeosomae (Hymenoptera) a parasitoid of the sunflower moth Homoeosoma electellum (Lepidoptera)

Date: 2006-03-01

Creator: Vladimir Douhovnikoff, Caterina Nerney, George K. Roderick, Craig H. Newton, Stephen C., Welter

Access: Open access

Nine microsatellite loci were isolated from the insect Dolichogenidea homoeosomae (Hymenoptera: Braconidae), an important parasitoid of the sunflower moth Homosoeosoma electellum (Lepidoptera: Pyralidae), and assayed for polymorphism. All nine loci were polymorphic within the five populations tested, with two to 14 alleles per locus. Expected and observed heterozygosities ranged from 0.39 to 0.90 and 0.25 to 0.72 respectively. These are the first microsatellite primers developed for D. homeosomae and will be useful for studies of population dynamics and connectivity. © 2006 Blackwell Publishing Ltd.


Neuropeptide modulation of pattern-generating systems in crustaceans: comparative studies and approaches

Date: 2016-12-01

Creator: Patsy S. Dickinson, Xuan Qu, Meredith E. Stanhope

Access: Open access

Central pattern generators are subject to modulation by peptides, allowing for flexibility in patterned output. Current techniques used to characterize peptides include mass spectrometry and transcriptomics. In recent years, hundreds of neuropeptides have been sequenced from crustaceans; mass spectrometry has been used to identify peptides and to determine their levels and locations, setting the stage for comparative studies investigating the physiological roles of peptides. Such studies suggest that there is some evolutionary conservation of function, but also divergence of function even within a species. With current baseline data, it should be possible to begin using comparative approaches to ask fundamental questions about why peptides are encoded the way that they are and how this affects nervous system function.


Miniature of The Modulatory Role of the Hyperpolarization-Activated Inward Current and Adenosine A1 - Dopamine D1 Receptor Heteromers on Spinal Locomotor Activity
The Modulatory Role of the Hyperpolarization-Activated Inward Current and Adenosine A1 - Dopamine D1 Receptor Heteromers on Spinal Locomotor Activity
Access to this record is restricted to members of the Bowdoin community. Log in here to view.

      Date: 2021-01-01

      Creator: Andrew Moore

      Access: Access restricted to the Bowdoin Community



        The contributions of motor neuronal and muscle modulation to behavioral flexibility in the stomatogastric system

        Date: 1995-12-01

        Creator: Patsy S. Dickinson

        Access: Open access

        The stomatogastric nervous system of crustaceans, which controls the four parts ofthe foregut, is subject to modulation at all levels, sensory, central and motor. Modulation of the central pattern generators, which are themselves made up largely of motor neurons, providesfor increased behavioral flexibility in a variety of ways. First, each of the pattern generators can be reconfigured to give multiple outputs. Second, the "boundaries" of the different pattern generators are in fact somewhat fluid, so that the neuronal composition of the pattern generators can be altered. For example, neurons can switch from one pattern generator toanother, or two or more pattern generators can fuse to generate an entirely new pattern and thereby produce a new behavior. The mechanisms responsible for many of these modulations include alterations of both intrinsic properties and synaptic interactions between neurons. In addition, the alteration of membrane properties contributes more directly to the behavioral output by changing action potential frequency. Finally, the muscles of the stomatogastric system can themselves be modulated, with the cpvl muscle, for example, becoming an endogenous oscillator in the presence of either dopamine or the peptide FMRFamide. © 1995 by the American Society of Zoologists.


        A simple polymerase chain reaction-based method for the construction of recombinase-mediated cassette exchange donor vectors

        Date: 2008-11-01

        Creator: Jack R. Bateman, C. Ting Wu

        Access: Open access

        Here we describe a simple method for generating donor vectors suitable for targeted transgenesis via recombinase-mediated cassette exchange (RMCE) using the ΦC31 integrase. This PCR-based strategy employs small attB "tails" on the primers used to amplify a sequence of interest, permitting the rapid creation of transgenes for in vivo analysis. Copyright © 2008 by the Genetics Society of America.


        FMRF-NH2-related neuropeptides in Biomphalaria spp., intermediate hosts for schistosomiasis: Precursor organization and immunohistochemical localization

        Date: 2021-09-01

        Creator: Solymar Rolón-Martínez, Mohamed R. Habib, Tamer A. Mansour, Manuel Díaz-Ríos, Joshua J.C., Rosenthal, Xiao Nong Zhou, Roger P. Croll, Mark W. Miller

        Access: Open access

        Freshwater snails of the genus Biomphalaria serve as intermediate hosts for the digenetic trematode Schistosoma mansoni, the etiological agent for the most widespread form of intestinal schistosomiasis. As neuropeptide signaling in host snails can be altered by trematode infection, a neural transcriptomics approach was undertaken to identify peptide precursors in Biomphalaria glabrata, the major intermediate host for S. mansoni in the Western Hemisphere. Three transcripts that encode peptides belonging to the FMRF-NH2-related peptide (FaRP) family were identified in B. glabrata. One transcript encoded a precursor polypeptide (Bgl-FaRP1; 292 amino acids) that included eight copies of the tetrapeptide FMRF-NH2 and single copies of FIRF-NH2, FLRF-NH2, and pQFYRI-NH2. The second transcript encoded a precursor (Bgl-FaRP2; 347 amino acids) that comprised 14 copies of the heptapeptide GDPFLRF-NH2 and 1 copy of SKPYMRF-NH2. The precursor encoded by the third transcript (Bgl-FaRP3; 287 amino acids) recapitulated Bgl-FaRP2 but lacked the full SKPYMRF-NH2 peptide. The three precursors shared a common signal peptide, suggesting a genomic organization described previously in gastropods. Immunohistochemical studies were performed on the nervous systems of B. glabrata and B. alexandrina, a major intermediate host for S. mansoni in Egypt. FMRF-NH2-like immunoreactive (FMRF-NH2-li) neurons were located in regions of the central nervous system associated with reproduction, feeding, and cardiorespiration. Antisera raised against non-FMRF-NH2 peptides present in the tetrapeptide and heptapeptide precursors labeled independent subsets of the FMRF-NH2-li neurons. This study supports the participation of FMRF-NH2-related neuropeptides in the regulation of vital physiological and behavioral systems that are altered by parasitism in Biomphalaria.


        An Arabidopsis serine/threonine kinase homologue with an epidermal growth factor repeat selected in yeast for its specificity for a thylakoid membrane protein

        Date: 1992-01-01

        Creator: Bruce D. Kohorn, Steven Lane, Tracy A. Smith

        Access: Open access

        A number of molecules have recently been described that effect the correct transport and assembly of cytoplasmically synthesized proteins to cellular membranes. To identify proteins that bind or modify other proteins during the process of membrane translocation, we developed a yeast selection scheme that employs the yeast transcriptional activator GAL4. This selection facilitates the isolation of cDNAs that encode proteases and binding proteins for known target peptide sequences. We report the isolation of an Arabidopsis cDNA encoding a polypeptide that can interact with the amino terminus of a light-harvesting chlorophyll a/b-binding protein (LHCP), a cytoplasmically synthesized protein that is integral to the chloroplast thylakoid membrane. The cDNA was selected in yeast from an Arabidopsis expression library for its ability to inhibit a transcriptional activator GAL4-LHCP fusion protein, but not inhibit native GAL4 protein. The LHCP aminoterminal sequences included in the fusion protein are known to regulate LHCP biogenesis and function. The Arabidopsis cDNA encodes a 595-amino acid protein with at least two functional domains, one with similarity to the family of proteinserine/threonine kinases and another that contains an epidermal growth factor repeat. The identification of an EGF repeat in Arabidopsis indicates that the motif is conserved between the plant and animal kingdoms. Hybridization studies indicate that this gene is likely to be present in other genera of plants. Its mRNA is detected in green leaves but not in other plant tissues or in etiolated plants. The specificity in yeast and the expression pattern in plants together are suggestive of a role for this protein kinase in the assembly or regulation of LHCP.