Showing 211 - 220 of 257 Items

- Embargo End Date: 2025-05-13
Date: 2020-01-01
Creator: Emma Beane
Access: Embargoed

- Embargo End Date: 2025-05-19
Date: 2022-01-01
Creator: Anthea L. Bell
Access: Embargoed
Date: 2014-10-01
Creator: Bitty A. Roy, Helen M. Alexander, Jennifer Davidson, Faith T. Campbell, Jeremy J., Burdon, Richard Sniezko, Clive Brasier
Access: Open access
- Loss of forests due to non-native invasive pests (including insects, nematodes, and pathogens) is a global phenomenon with profound population, community, ecosystem, and economic impacts. We review the magnitude of pest-associated forest loss worldwide and discuss the major ecological and evolutionary causes and consequences of these invasions. After compiling and analyzing a dataset of pest invasions from 21 countries, we show that the number of forest pest invasions recorded for a given country has a significant positive relationship with trade (as indicated by gross domestic product) and is not associated with the amount of forested land within that country. We recommend revisions to existing international protocols for preventing pest entry and proliferation, including prohibiting shipments of non-essential plants and plant products unless quarantined. Because invasions often originate from taxa that are scientifically described only after their introduction, current phytosanitary regulations - which target specific, already named organisms - Are ineffective.
Date: 2014-05-01
Creator: Lauren A Skerritt
Access: Open access
- In the American lobster (Homarus americanus), neurogenic stimulation of the heart drives fluxes of calcium (Ca2+) into the cytoplasm of a muscle cell resulting in heart muscle contraction. The heartbeat is completed by the active transport of calcium out of the cytoplasm into extracellular and intracellular spaces. An increase in the frequency of calcium release is expected to increase amplitude and duration of muscle contraction. This makes sense because an increase in cytoplasmic calcium should increase the activation of the muscle contractile elements (actin and myosin). Since calcium cycling is a reaction-diffusion process, the extent to which calcium mediates contraction amplitude and frequency will depend on the specific diffusion relationships of calcium in this system. Despite the importance of understanding this relationship, it is difficult to obtain experimental information on the dynamics of cytoplasmic calcium. Thus, we developed a mathematical diffusion model of the myofibril (muscle cell) to simulate calcium cycling in the lobster cardiac muscle cell. The amplitude and duration of the force curves produced by the model empirically mirrored that of the experimental data over a range of calcium diffusion coefficients (1-16), nerve stimulation durations (1/6-1/3 of a contraction period), and frequencies (40-80 Hz). The characteristics that alter the response of the lobster cardiac muscle system are stimulation duration (i.e., burst duration), burst frequency, and the rate of calcium diffusion into the cell’s cytoplasm. For this reason, we developed protocols that allow parameters representing these characteristics in the calcium-force model to be determined from isolated whole muscle experiments on lobster hearts (Phillips et al., 2004). These parameters are used to predict variability in lobster heart muscle function consistent with data recorded in experiments. Within the physiological range of nerve stimulation parameters (burst duration and cycle period), calcium increased the cell’s force output for increased burst duration. For example, increased duration of stimulation increased the muscle contraction period and vice versa. In terms of diffusion, a slower rate of calcium diffusion out of the sarcoplasmic reticulum decreased both the calcium level and the contraction duration of the cell. Finally, changes in stimulation frequency did not produce changes in contraction amplitude and duration. When considered in conjunction with experimental stimulations using lobster heart muscle cells, these data illustrate the prominent role for calcium diffusion in governing contraction-relaxation cycles in lobster hearts.
Date: 1996-09-05
Creator: Zheng Hui He, Masaaki Fujiki, Bruce D. Kohorn
Access: Open access
- Physical connections between higher plant cell walls and the plasma membrane have been identified visually, but the molecules involved in the contact are unknown. We describe here an Arabidopsis thaliana protein kinase, designated Wak1 for wall-associated kinase, whose predicted extracytoplasmic domain contains several epidermal growth factor repeats and identity with a viral movement protein. Wak1 fractionates with insoluble material when plant tissue is ground in a variety of buffers and detergents, suggesting a tight association with the plant extracellular matrix. Immunocytochemistry confirms that Wak1 is associated with the cell wall. Enzymatic digestion of the cell wall allows the release of Wak1 from the insoluble cell wall fraction, and protease experiments indicate that Wak1 likely has a cytoplasmic kinase domain, and the EGF containing domain is extracellular. Wak1 is found in all vegetative tissues of Arabidopsis, and has relatives in other angiosperms, but not Chlamydomonas. We suggest that Wak1 is a good candidate for a physical continuum between the cell wall and the cytoplasm, and since the kinase is cytoplasmic, it also has the potential to mediate signals to the cytoplasm from the cell wall.
Date: 1986-01-01
Creator: B. D. Kohorn, E. Harel, P. R. Chitnis, J. P. Thornber, E. M., Tobin
Access: Open access
- The precursor for a Lemna light-harvesting chlorophyll a/b protein (pLHCP) has been synthesized in vitro from a single member of the nuclear LHCP multigene family. We report the sequence of this gene. When incubated with Lemna chloroplasts, the pLHCP is imported and processed into several polypeptides, and the mature form is assembled into the light-harvesting complex of photosystem II (LHC II). The accumulation of the processed LHCP is enhanced by the addition to the chloroplasts of a precursor and a co-factor for chlorophyll biosynthesis. Using a model for the arrangement of the mature polypeptide in the thylakoid membrane as a guide, we have created mutations that lie within the mature coding region. We have studied the processing, the integration into thylakoid membranes, and the assembly into light-harvesting complexes of six of these deletions. Four different mutant LHCPs are found as processed proteins in the thylakoid membrane, but only one appears to have an orientation in the membrane that is similar to that of the wild type. No mutant LHCP appears in LHC II. The other two mutant LHCPs cannot be detected within the chloroplasts. We conclude that stable complex formation is not required for the processing and insertion of altered LHCPs into the thylakoid membrane. We discuss the results in light of our model.
Date: 2004-01-01
Creator: Nissa L. Lohrmann, Barry A. Logan, Amy S. Johnson
Access: Open access
- Mastocarpus stellatus and Chondrus crispus are red macroalgae that co-dominate the lower rocky intertidal zones of the northern Atlantic coast. M. stellatus is more tolerant than C. crispus of environmental stresses, particularly those experienced during winter. This difference in tolerance has been attributed, in part, to greater contents or activities of certain antioxidants in M. stellatus. We compared the photosynthetic capacities and activities of three antioxidant enzymes - superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR) - as well as the contents of ascorbate from fronds of M. stellatus and C. crispus collected over a year. Photosynthetic capacity increased in winter, but did not differ between species in any season. The activities of the three antioxidant enzymes and the contents of ascorbate were significantly greater in tissues collected during months with mean air and water temperatures below 7.5°C ("cold" months; December, February, March, April) than in months with mean air temperatures above 11°C ("warm" months; June, July, August, October). Overall, C. crispus had significantly greater SOD and APX activities, while M. stellatus had higher ascorbate contents. Species-specific differences in GR activity depended upon mean monthly temperatures at the time of tissue collection; C. crispus had higher activities during cold months, whereas M. stellatus had higher activities during warm months. Taken together, these data indicate that increased ROS scavenging capacity is a part of winter acclimatization; however, only trends in ascorbate content support the hypothesis that greater levels of antioxidants underlie the relatively greater winter tolerance of M. stellatus in comparison to C. crispus.
Date: 2016-10-01
Creator: Patricia L. Jones, Anurag A. Agrawal
Access: Open access
- Attraction of mutualists and defense against antagonists are critical challenges for most organisms and can be especially acute for plants with pollinating and non-pollinating flower visitors. Secondary compounds in flowers have been hypothesized to adaptively mediate attraction of mutualists and defense against antagonists, but this hypothesis has rarely been tested. The tissues of milkweeds (Asclepias spp.) contain toxic cardenolides that have long been studied as chemical defenses against herbivores. Milkweed nectar also contains cardenolides, and we have examined the impact of manipulating cardenolides in nectar on the foraging choices of two flower visitors: generalist bumble bees, Bombus impatiens, which are mutualistic pollinators, and specialist monarch butterflies, Danaus plexippus, which are herbivores as larvae and ineffective pollinators as adults. Although individual bumble bees in single foraging bouts showed no avoidance of cardenolides at the highest natural concentrations reported for milkweeds, a pattern of deterrence did arise when entire colonies were allowed to forage for several days. Monarch butterflies were not deterred by the presence of cardenolides in nectar when foraging from flowers, but laid fewer eggs on plants paired with cardenolide-laced flowers compared to controls. Thus, although deterrence of bumble bees by cardenolides may only occur after extensive foraging, a primary effect of nectar cardenolides appears to be reduction of monarch butterfly oviposition.
Date: 2024-01-01
Creator: Jared Lynch
Access: Open access
- The mitochondrial genome has historically been relegated to a neutral genetic marker, but new evidence suggests mitochondrial DNA to be a target for adaptation to environmental stress. The invasive European green crab (Carcinus maenas) exemplifies this in the Gulf of Maine’s hybrid zone, where interbreeding populations exhibit thermal tolerances influenced by mitochondrial genotype. To better understand the mechanism behind this phenomenon, the effect of mitochondrial genotype on mitochondrial activity was tested by measuring mtDNA copy number (mtCN) and the activity of complex I, II, and IV of the electron transport system via high-resolution respirometry. Mitochondria isolated from frozen heart tissue were measured at three temperature points—5°C, 25°C, and 37°C—to represent thermal stresses and a control. It was predicted that cold-adapted haplogroups would exhibit both higher mtCN and increased activity for each complex, either across all temperatures or exclusively at 5°C compared to a warm-adapted haplogroup. Initial comparisons of mitochondria from fresh and frozen tissue at 25°C found lower activity for complex II and IV in frozen extracts, but they continued to be used for convenience. No differences were observed across haplogroups for mtCN or high-resolution respirometry, suggesting that mitochondrial activity does not underlie differences in thermal tolerance. However, temperature greatly influenced activity measurements with complex II and IV exhibiting the highest rates at 37°C while complex I exhibited optimal activity at 25°C. This study represents the first of its kind for C. maenas, providing a foundation for future experiments to continue exploring mitochondria in the context of adaptive evolution.
Date: 2001-09-04
Creator: Jack Bateman, R. Srekantha Reddy, Haruo Saito, David Van Vactor
Access: Open access
- Background: Regulation of actin structures is instrumental in maintaining proper cytoarchitecture in many tissues. In the follicular epithelium of Drosophila ovaries, a system of actin filaments is coordinated across the basal surface of cells encircling the oocyte. These filaments have been postulated to regulate oocyte elongation; however, the molecular components that control this cytoskeletal array are not yet understood. Results: We find that the receptor tyrosine phosphatase (RPTP) Dlar and integrins are involved in organizing basal actin filaments in follicle cells. Mutations in Dlar and the common β-integrin subunit mys cause a failure in oocyte elongation, which is correlated with a loss of proper actin filament organization. Immunolocalization shows that early in oogenesis Dlar is polarized to membranes where filaments terminate but becomes generally distributed late in development, at which time β-integrin and Enabled specifically associate with actin filament terminals. Rescue experiments point to the early period of polar Dlar localization as critical for its function. Furthermore, clonal analysis shows that loss of Dlar or mys influences actin filament polarity in wild-type cells that surround mutant tissues, suggesting that communication between neighboring cells regulates cytoskeletal organization. Finally, we find that two integrin α subunits encoded by mew and if are required for proper oocyte elongation, implying that multiple components of the ECM are instructive in coordinating actin fiber polarity. Conclusions: Dlar cooperates with integrins to coordinate actin filaments at the basal surface of the follicular epithelium. To our knowledge, this is the first direct demonstration of an RPTP's influence on the actin cytoskeleton.