Showing 221 - 230 of 274 Items

Miniature of Analysis of adhesion mutants in <i>Arabidopsis thaliana</i>
Analysis of adhesion mutants in Arabidopsis thaliana
This record is embargoed.
    • Embargo End Date: 2025-05-14

    Date: 2020-01-01

    Creator: Bridgid Elizabeth Greed

    Access: Embargoed



      Genetic Population Structure and Accuracy of Morphological Assessment in Alosa aestivalis (Blueback Herring) and A. pseudoharengus (Alewife)

      Date: 2017-12-01

      Creator: Christopher Kan, John Lichter, Vladimir Douhovnikoff

      Access: Open access

      Alosa aestivalis and A. pseudoharengus are herring congeners that are important forage species for piscivorous fish and birds. We measured population structure metrics for these species using microsatellite markers. The Southern Gulf of Maine study area allowed the assessment of these species at an inter- and intra-watershed level. We found no detectable population structure within or among watershed for either species which agrees with other recent research. Our results support regional-scale (e.g., Gulf of Maine) plans for management for A. aestivalis and A. pseudoharengus. We found that 5.4% of our samples were hybrids. Our study adds to a growing body of evidence that hybridization and introgression should be management concerns for these species, and precautions should be taken to preserve species barriers. An error rate of morphological identification was calculated by comparing morphological identifications against genetic classifications. We found an overall identification error rate of 16%, which differed significantly from zero (P = 0.008). Managers should also take note of the uncertainty in morphological identifications and adjust stock models and policies accordingly.


      Salix exigua clonal growth and population dynamics in relation to disturbance regime variation

      Date: 2005-01-01

      Creator: Vladimir Douhovnikoff, Joe R. McBride, Richard S. Dodd

      Access: Open access

      Willows are important riparian colonizers. However, the predominant models of early riparian colonization, which emphasize seedling recruitment, are inadequate to explain the success of these species in light of the extremely low rates of seedling survival observed. We used molecular fingerprinting markers (AFLPs) to identify and characterize Salix exigua clones on six sites, ranging in size from 850 to 1150 m2, located on two rivers. Clones as large as 325 m2 were detected, and an average of six clones per site occupied 75% of the vegetated area. Building on Mahoney and Rood's recruitment box model, we propose a model whereby prolific clonal growth allows for long-term colonization of riparian zones, and the balance between the relative importance of seedling regeneration and clonal growth varies based upon disturbance regime. A reduction in disturbance regime resulted in greater clonal growth and reduced genotypic variation. It is probable that, with an extended reduction in disturbance, the Salix exigua component would be represented by fewer, larger clones and would eventually decline significantly when these clones are replaced by taller and more shade tolerant species. © 2005 by the Ecological Society of America.


      The role of behavioral diversity in determining the extent to which the cardiac ganglion is modulated in three species of crab

      Date: 2020-01-01

      Creator: Grace Bukowski-Thall

      Access: Open access

      Central pattern generators (CPGs) are neural networks that generate the rhythmic outputs that control behaviors such as locomotion, respiration, and chewing. The stomatogastric nervous system (STNS), which contains the CPGs that control foregut movement, and the cardiac ganglion (CG), which is a CPG that controls heartbeat, are two commonly studied systems in decapod crustaceans. Neuromodulators are locally or hormonally released neuropeptides and amines that change the output patterns of CPGs like the STNS and CG to allow behavioral flexibility. We have hypothesized that neuromodulation provides a substrate for the evolution of behavioral flexibility, and as a result, systems exhibiting more behavioral flexibility are modulated to a greater degree. To examine this hypothesis, we evaluated the extent to which the STNS and the CG are modulated in the majoid crab species Chionoecetes opilio, Libinia emarginata, and Pugettia producta. C. opilio and L. emarginata are opportunistic feeders, whereas P. producta has a highly specialized kelp diet. We predicted that opportunistic feeding crabs that chew and process a wide variety of food types would exhibit greater STNS neuromodulatory capacity than those with a specialized diet. The STNS of L. emarginata and C. opilio responded to the seven endogenous neuromodulators oxotremorine, dopamine, CabTrp Ia, CCAP, myosuppressin, proctolin, and RPCH, whereas the STNS of P. producta only responded to proctolin, oxotremorine, myosuppressin, RPCH (25% of the time), variably to dopamine, and not at all to CabTrp and CCAP. Because P. producta, L. emarginata, and C. opilio all belong to the Majoidea superfamily, their primary distinctions are their feeding habits. For this reason, we further predicted that there would be no relationship between diet and modulatory capacity in the cardiac ganglion (CG) of the neurogenic heart. This would suggest that a lack of STNS modulatory capacity in P. producta relative to L. emarginata and C. opilio is specific to evolved foregut function. Whole-heart recordings from P. producta indicated that, unlike the STNS, the CG responds to CabTrp and CCAP. P. producta hearts also responded to oxotremorine and inconsistently to dopamine and proctolin. The CG of C. opilio was modulated by CabTrp, CCAP, dopamine, proctolin, myosuppressin, and oxotremorine, but not RPCH. The CG of L. emarginata responded to CCAP, and inconsistently to CabTrp, dopamine, and proctolin, but not to myosuppressin, RPCH, and surprisingly oxotremorine. Although cardiac responses were not identical between species, opportunistic and specialist feeders responded more similarly to the modulators tested in the heart than in the STNS. Notably, P. producta responded to each modulator in a similar manner to C. opilio and/or L. emarginata. However, L. emarginata’s surprising lack of cardiac response to oxotremorine suggests that phylogenetic closeness may not control for differences in CG and STNS function between species. Nevertheless, sample sizes of all three species were quite small, and individual differences lead to inconsistencies in the data. As a result, sample size must be enlarged to draw firm conclusions.


      An Arabidopsis cell wall-associated kinase required for invertase activity and cell growth

      Date: 2006-04-01

      Creator: Bruce D. Kohorn, Masaru Kobayashi, Sue Johansen, Jeff Riese, Li Fen, Huang, Karen Koch, Sarita Fu, Anjali Dotson, Nicole Byers

      Access: Open access

      The wall-associated kinases (WAK), a family of five proteins that contain extracellular domains that can be linked to pectin molecules of the cell wall, span the plasma membrane and have a cytoplasmic serine/threonine kinase domain. Previous work has shown that a reduction in WAK protein levels leads to a loss of cell expansion, indicating that these receptor-like proteins have a role in cell shape formation. Here it is shown that a single wak2 mutation exhibits a dependence on sugars and salts for seedling growth. This mutation also reduces the expression and activity of vacuolar invertase, often a key factor in turgor and expansion. WAKs may thus provide a molecular mechanism linking cell wall sensing (via pectin attachment) to regulation of solute metabolism, which in turn is known to be involved in turgor maintenance in growing cells. © 2006 The Authors.


      The use of Hardy-Weinberg Equilibrium in clonal plant systems

      Date: 2016-02-01

      Creator: Vladimir Douhovnikoff, Matthew Leventhal

      Access: Open access

      Traditionally population genetics precludes the use of the same genetic individual more than once in Hardy-Weinberg (HW) based calculations due to the model's explicit assumptions. However, when applied to clonal plant populations this can be difficult to do, and in some circumstances, it may be ecologically informative to use the ramet as the data unit. In fact, ecologists have varied the definition of the individual from a strict adherence to a single data point per genotype to a more inclusive approach of one data point per ramet. With the advent of molecular tools, the list of facultatively clonal plants and the recognition of their ecological relevance grows. There is an important risk of misinterpretation when HW calculations are applied to a clonal plant not recognized as clonal, as well as when the definition of the individual for those calculations is not clearly stated in a known clonal species. Focusing on heterozygosity values, we investigate cases that demonstrate the extreme range of potential modeling outcomes and describe the different contexts where a particular definition could better meet ecological modeling goals. We emphasize that the HW model can be ecologically relevant when applied to clonal plants, but caution is necessary in how it is used, reported, and interpreted. We propose that in known clonal plants, both genotype (GHet) and ramet (RHet) based calculations are reported to define the full range of potential values and better facilitate cross-study comparisons.


      Does differential receptor distribution underlie variable responses to a neuropeptide in the lobster cardiac system?

      Date: 2021-08-02

      Creator: Audrey J. Muscato, Patrick Walsh, Sovannarath Pong, Alixander Pupo, Roni J., Gross, Andrew E. Christie, J. Joe Hull, Patsy S. Dickinson

      Access: Open access

      Central pattern generators produce rhythmic behaviors independently of sensory input; however, their outputs can be modulated by neuropeptides, thereby allowing for functional flexibility. We investigated the effects of C-type allatostatins (AST-C) on the cardiac ganglion (CG), which is the central pattern generator that controls the heart of the American lobster, Homarus americanus, to identify the biological mechanism underlying the significant variability in individual responses to AST-C. We proposed that the presence of multiple receptors, and thus differential receptor distribution, was at least partly responsible for this observed variability. Using transcriptome mining and PCR-based cloning, we identified four AST-C receptors (ASTCRs) in the CG; we then characterized their cellular localization, binding potential, and functional activation. Only two of the four receptors, ASTCR1 and ASTCR2, were fully functional GPCRs that targeted to the cell surface and were activated by AST-C peptides in our insect cell expression system. All four, however, were amplified from CG cDNAs. Following the confirmation of ASTCR expression, we used physiological and bioinformatic techniques to correlate receptor expression with cardiac responses to AST-C across individuals. Expression of ASTCR1 in the CG showed a negative correlation with increasing contraction amplitude in response to AST-C perfusion through the lobster heart, suggesting that the differential expression of ASTCRs within the CG is partly responsible for the specific physiological response to AST-C exhibited by a given individual lobster.


      Assessment and comparison of putative amine receptor complement/diversity in the brain and eyestalk ganglia of the lobster, Homarus americanus

      Date: 2020-06-01

      Creator: Andrew E. Christie, J. Joe Hull, Patsy S. Dickinson

      Access: Open access

      In decapods, dopamine, octopamine, serotonin, and histamine function as locally released/hormonally delivered modulators of physiology/behavior. Although the functional roles played by amines in decapods have been examined extensively, little is known about the identity/diversity of their amine receptors. Recently, a Homarus americanus mixed nervous system transcriptome was used to identify putative neuronal amine receptors in this species. While many receptors were identified, some were fragmentary, and no evidence of splice/other variants was found. Here, the previously predicted proteins were used to search brain- and eyestalk ganglia-specific transcriptomes to assess/compare amine receptor complements in these portions of the lobster nervous system. All previously identified receptors were reidentified from the brain and/or eyestalk ganglia transcriptomes, i.e., dopamine alpha-1, beta-1, and alpha-2 (Homam-DAα2R) receptors, octopamine alpha (Homam-OctαR), beta-1, beta-2, beta-3, beta-4, and octopamine–tyramine (Homam-OTR-I) receptors, serotonin type-1A, type-1B (Homam-5HTR1B), type-2B, and type-7 receptors; and histamine type-1 (Homam-HA1R), type-2, type-3, and type-4 receptors. For many previously partial proteins, full-length receptors were deduced from brain and/or eyestalk ganglia transcripts, i.e., Homam-DAα2R, Homam-OctαR, Homam-OTR-I, and Homam-5HTR1B. In addition, novel dopamine/ecdysteroid, octopamine alpha-2, and OTR receptors were discovered, the latter, Homam-OTR-II, being a putative paralog of Homam-OTR-I. Finally, evidence for splice/other variants was found for many receptors, including evidence for some being assembly-specific, e.g., a brain-specific Homam-OTR-I variant and an eyestalk ganglia-specific Homam-HA1R variant. To increase confidence in the transcriptome-derived sequences, a subset of receptors was cloned using RT-PCR. These data complement/augment those reported previously, providing a more complete picture of amine receptor complement/diversity in the lobster nervous system.


      Miniature of Examining Functional Roles for Anthocyanins in Plant Leaves
      Examining Functional Roles for Anthocyanins in Plant Leaves
      Access to this record is restricted to members of the Bowdoin community. Log in here to view.

          Date: 2016-05-01

          Creator: Benjamin M West

          Access: Access restricted to the Bowdoin Community



            Miniature of Three Decades of Replicated Field Studies Reveal Eelgrass (<i>Zostera marina</i>) Inhibits Soft-shell Clam (<i>Mya arenaria</i>) Growth in Eastern Maine
            Three Decades of Replicated Field Studies Reveal Eelgrass (Zostera marina) Inhibits Soft-shell Clam (Mya arenaria) Growth in Eastern Maine
            This record is embargoed.
              • Embargo End Date: 2027-05-16

              Date: 2024-01-01

              Creator: Everett Horch

              Access: Embargoed