Showing 251 - 257 of 257 Items
Cell wall-associated kinases and pectin perception
Date: 2016-01-01
Creator: Bruce D. Kohorn
Access: Open access
- The pectin matrix of the angiosperm cell wall is regulated in both synthesis and modification and greatly influences the direction and extent of cell growth. Pathogens, herbivory and mechanical stresses all influence this pectin matrix and consequently plant form and function. The cell wall-associated kinases (WAKs) bind to pectin and regulate cell expansion or stress responses depending upon the state of the pectin. This review explores the WAKs in the context of cell wall biology and signal transduction pathways.
The cell wall-associated kinases, WAKs, as pectin receptors
Date: 2012-05-08
Creator: Bruce D. Kohorn, Susan L. Kohorn
Access: Open access
- The wall-associated kinases, WAKs, are encoded by five highly similar genes clustered in a 30-kb locus in Arabidopsis. These receptor-like proteins contain a cytoplasmic serine threonine kinase, a transmembrane domain, and a less conserved region that is bound to the cell wall and contains a series of epidermal growth factor repeats. Evidence is emerging that WAKs serve as pectin receptors, for both short oligogalacturonic acid fragments generated during pathogen exposure or wounding, and for longer pectins resident in native cell walls. This ability to bind and respond to several types of pectins correlates with a demonstrated role for WAKs in both the pathogen response and cell expansion during plant development. © 2012 Kohorn and Kohorn.

A multifaceted analysis of Semaphorin-induced neuroplasticity in the nervous system of Gryllus bimaculatus Access to this record is restricted to members of the Bowdoin community. Log in here to view.
- Restriction End Date: 2028-06-01
Date: 2023-01-01
Creator: Ean Lev Small
Access: Access restricted to the Bowdoin Community
Taming the giant within
Date: 2019-01-01
Creator: Jack R. Bateman, David J. Anderson
Access: Open access
Erratum: Sutural loosening and skeletal flexibility during growth: Determination of drop-like shapes in sea urchins (Proceedings of The Royal Society of London B (February 7, 2002) 269 (215-220))
Date: 2002-12-22
Creator: Amy S. Johnson, Olaf Ellers, Jim Lemire, Melissa Minor, Holly A., Leddy
Access: Open access
islet reveals segmentation in the amphioxus hindbrain homolog
Date: 2000-04-01
Creator: William R. Jackman, James A. Langeland, Charles B. Kimmel
Access: Open access
- The vertebrate embryonic hindbrain is segmented into rhombomeres. Gene expression studies suggest that amphioxus, the closest invertebrate relative of vertebrates, has a hindbrain homolog. However, this region is not overtly segmented in amphioxus, raising the question of how hindbrain segmentation arose in chordate evolution. Vertebrate hindbrain segmentation includes the patterning of cranial motor neurons, which can be identified by their expression of the LIM-homeodomain transcription factor islet1. To learn if the amphioxus hindbrain homolog is cryptically segmented, we cloned an amphioxus gene closely related to islet1, which we named simply islet. We report that amphioxus islet expression includes a domain of segmentally arranged cells in the ventral hindbrain homolog. We hypothesize that these cells are developing motor neurons and reveal a form of hindbrain segmentation in amphioxus. Hence, vertebrate rhombomeres may derive from a cryptically segmented brain present in the amphioxus/vertebrate ancestor. Other islet expression domains provide evidence for amphioxus homologs of the pineal gland, adenohypophysis, and endocrine pancreas. Surprisingly, homologs of vertebrate islet1-expressing spinal motor neurons and Rohon-Beard sensory neurons appear to be absent. (C) 2000 Academic Press.
Rapid oligo-galacturonide induced changes in protein phosphorylation in arabidopsis
Date: 2016-04-01
Creator: Bruce D. Kohorn, Divya Hoon, Benjamin B. Minkoff, Michael R. Sussman, Susan L., Kohorn
Access: Open access
- The wall-associated kinases (WAKs)1 are receptor protein kinases that bind to long polymers of cross-linked pectin in the cell wall. These plasma-membrane-associated protein kinases also bind soluble pectin fragments called oligo-galacturonides (OGs) released from the wall after pathogen attack and damage. WAKs are required for cell expansion during development but bind water soluble OGs generated from walls with a higher affinity than the wall-associated polysaccharides. OGs activate a WAKdependent, distinct stress-like response pathway to help plants resist pathogen attack. In this report, a quantitative mass-spectrometric-based phosphoproteomic analysis was used to identify Arabidopsis cellular events rapidly induced by OGs in planta. Using N14/ N15 isotopic in vivo metabolic labeling, we screened 1,000 phosphoproteins for rapid OG-induced changes and found 50 proteins with increased phosphorylation, while there were none that decreased significantly. Seven of the phosphosites within these proteins overlap with those altered by another signaling molecule plants use to indicate the presence of pathogens (the bacterial "elicitor" peptide Flg22), indicating distinct but overlapping pathways activated by these two types of chemicals. Genetic analysis of genes encoding 10 OG-specific and two Flg22/OG-induced phosphoproteins reveals that null mutations in eight proteins compromise the OG response. These phosphorylated proteins with genetic evidence supporting their role in the OG response include two cytoplasmic kinases, two membrane-associated scaffold proteins, a phospholipase C, a CDPK, an unknown cadmium response protein, and a motor protein. Null mutants in two proteins, the putative scaffold protein REM1.3, and a cytoplasmic receptor like kinase ROG2, enhance and suppress, respectively, a dominant WAK allele. Altogether, the results of these chemical and genetic experiments reveal the identity of several phosphorylated proteins involved in the kinase/ phosphatase-mediated signaling pathway initiated by cell wall changes.