Showing 31 - 40 of 116 Items

Brain Networks Related to Beta Oscillatory Activityduring Episodic Memory Retrieval

Date: 2018-02-01

Creator: Erika Nyhus

Access: Open access

Evidence from fMRI has consistently located a widespread network of frontal, parietal, and temporal lobe regions during episodic retrieval. However, the temporal limitations of the fMRI methodology have made it difficult to assess the transient network dynamics by which these distributed regions coordinate activity. Recent evidence suggests that beta oscillations (17-20 Hz) are important for top-down control for memory suppression. However, the spatial limitations of the EEG methodology make it difficult to assess the relationship between these oscillatory signals and the distributed networks identified with fMRI. This study used simultaneous EEG/fMRI to identify networks related to beta oscillations during episodic retrieval. Participants studied adjectives and either imagined a scene (Place Task) or judged its pleasantness (Pleasant Task). During the recognition test, participants decided which task was performed with each word (“Old Place Task” or “Old Pleasant Task”) or “New.” EEG results revealed that posterior beta power was greater for new than old words. fMRI results revealed activity in a frontal, parietal network that was greater for old than new words, consistent with prior studies. Although overall beta power increases correlated with decreased activity within a predominantly parietal network, within the right dorsolateral and ventrolateral pFC, beta power correlated with BOLD activity more under conditions requiring more cognitive control and EEG/fMRI effects in the right frontal cortex correlated with BOLD activity in a frontoparietal network. Therefore, using simultaneous EEG and fMRI, the present results suggest that beta oscillations are related to postretrieval control operations in the right frontal cortex and act within a broader postretrieval control network. © 2017 Massachusetts Institute of Technology.


Alpha modulation in younger and older adults during distracted encoding

Date: 2022-06-01

Creator: Syanah C. Wynn, Erika Nyhus, Ole Jensen

Access: Open access

To successfully encode information into long-term memory, we need top-down control to focus our attention on target stimuli. This attentional focus is achieved by the modulation of sensory neuronal excitability through alpha power. Failure to modulate alpha power and to inhibit distracting information has been reported in older adults during attention and working memory tasks. Given that alpha power during encoding can predict subsequent memory performance, aberrant oscillatory modulations might play a role in age-related memory deficits. However, it is unknown whether there are age-related differences in memory performance or alpha modulation when encoding targets with distraction. Here we show that both older and younger adults are able to encode targets paired with distractors and that the level of alpha power modulation during encoding predicted recognition success. Even though older adults showed signs of higher distractibility, this did not harm their episodic memory for target information. Also, we demonstrate that older adults only modulated alpha power during high distraction, both by enhancing target processing and inhibiting distractor processing. These results indicate that both younger and older adults are able to employ the same inhibitory control mechanisms successfully, but that older adults fail to call upon these when distraction is minimal. The findings of this study give us more insight into the mechanisms involved in memory encoding across the lifespan. © 2020 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.


Receptors and Neuropeptides in the Cardiac Ganglion of the American Lobster, Homarus americanus: A Bioinformatics and Mass Spectrometric Investigation

Date: 2019-01-01

Creator: Louis Mendez

Access: Open access

Central pattern generators (CPGs) are neural networks that generate rhythmic motor patterns to allow organisms to perform stereotypical tasks, such as breathing, scratching, flying, and walking. The American lobster, Homarus americanus, is a simple model system whose CPGs are functionally analogous to those in vertebrate models and model complex rhythmic behaviors. CPGs in many Crustacea, including the American lobster, have been studied because of their ability to maintain biological function after isolation in physiologically relevant conditions. The cardiac ganglion (CG) is a CPG consisting of five larger motor neurons and four smaller pacemaker neurons that innervate the cardiac neuromuscular system and generate electrical bursts that drive patterned behaviors. Neuromodulators, such as neuropeptides, are known to modulate neural output in the CPGs of the American lobster. Currently, neuromodulators affecting the cardiac ganglia are thought to be mainly expressed and secreted outside of the cardiac ganglia, acting as extrinsic neuromodulators. However, there is current evidence to support the idea that neuromodulators can be intrinsically expressed within the cardiac ganglion of the American lobster. Preliminary studies using transcriptomic techniques on genomic and transcriptomic information indicate that neuropeptides are likely expressed within the cardiac ganglion. However, little research has been done to determine whether these neuropeptides are expressed in the cardiac ganglion of the American lobster. Therefore, the purpose of this study is to combine bioinformatics and mass spectrometric techniques to determine whether select neuropeptides are present in the cardiac ganglion within the cardiac neuromuscular system of the American lobster, Homarus americanus. Our data mining techniques using protein query sequences obtained from previously annotated brain and eyestalk transcriptomes resulted in the identification of 22 putative neuropeptides preprohormones from 17 neuropeptide families and 20 putative neuropeptide receptors from 17 neuropeptide receptor families in the CG transcriptome. Additionally, 9 putative neuropeptide receptors from 7 neuropeptide receptor families were detected in the cardiac muscle transcriptome. Of the 17 neuropeptide families detected, receptors for 9 of these neuropeptide families were detected in the CG transcriptome. Receptors for 6 of the neuropeptide families were also present in the cardiac muscle transcriptome. Interestingly, receptors for 6 of neuropeptide families detected were not found in either the CG or cardiac muscle transcriptomes, and receptors for 4 neuropeptide families that weren’t detected in the CG transcriptome were found in the cardiac muscle transcriptome. Therefore, our research suggests that neuropeptides are able to modulate CPG activity extrinsically, either though hormonal or local delivery, or intrinsically. Additionally, neuropeptides were extracted from the stomatogastric ganglion and the commissural ganglion using a scaled-down neuropeptide extraction protocol to estimate the number of tissues required to obtain sufficiently strong mass spectrometry signals. Pooled samples with two commissural ganglia and single samples of a commissural ganglion and a stomatogastric ganglion displayed little signal and an increase in larger peptides and impurities relative to single-tissue samples. Therefore, further optimization of the scaled-down neuropeptide extraction protocol must be done prior to analysis of a cardiac ganglion in the American lobster.


Miniature of Differential gene expression during compensatory plasticity in the prothoracic ganglion of the cricket, <i>Gryllus bimaculatus</i>
Differential gene expression during compensatory plasticity in the prothoracic ganglion of the cricket, Gryllus bimaculatus
Access to this record is restricted to members of the Bowdoin community. Log in here to view.

      Date: 2020-01-01

      Creator: Felicia F. Wang

      Access: Access restricted to the Bowdoin Community



        Interaction of stretch feedback and beat regularity in response to AMGSEFLamide in the heart of Homarus americanus

        Date: 2020-01-01

        Creator: William Allen

        Access: Open access

        Central pattern generators (CPGs) are neural circuits whose component neurons possess intrinsic properties and synaptic connections that allow them to generate rhythmic motor outputs in the absence of descending inputs. The cardiac ganglion (CG) is a nine-cell CPG located in the American lobster, Homarus americanus. Stretch of the myocardium feeds back to the CG through mechano-sensitive dendrites and is thought to play a role in maintaining regularity in the beating pattern of the heart. The novel peptide AMGSEFLamide has been observed to induce irregular beating patterns when applied at high concentrations. This study investigated the interaction between stretch-related feedback and AMGSEFLamide modulation in generating irregular beating patterns in the whole heart of Homarus americanus. It was hypothesized that greater longitudinal stretch of the heart would result in greater regularity in the instantaneous beat frequency, based on previous findings that stretch-sensitive dendrites play a role in the regulation of the heartbeat. Furthermore, it was predicted that the elimination of stretch feedback via deafferentation of the heart would augment the irregularity induced by AMGSEFLamide. Data showed significantly increased irregularity in beating in response to 10-6 M AMGSEFLamide application. Longitudinal stretch did not reliably alter baseline variability in frequency, nor did it influence the modulatory effect of AMGSEFLamide. Deafferentation did not significantly alter baseline irregularity. Deafferented preparations did exhibit a trend of responding to AMGSEFLamide with a greater percent increase in irregularity compared to when afferents were intact, suggesting a potential role of stretch-stabilization in response to modulatory perturbations in the Homarus heart.


        The role of behavioral diversity in determining the extent to which central pattern generators are modulated

        Date: 2020-01-01

        Creator: Jacob Salman Kazmi

        Access: Open access

        Neuromodulation may be a substrate for the evolution of behavioral diversity. The extent to which a central pattern generator is modulated could serve as a mechanism that enables variability in motor output dependent on an organism’s need for behavioral flexibility. The pyloric circuit, a central pattern generator in the crustacean stomatogastric nervous system (STNS), stimulates contractions of foregut muscles in digestion. Since neuromodulation enables variation in the movements of pyloric muscles, more diverse feeding patterns should be correlated with a higher degree of STNS neuromodulation. Previous data have shown that Cancer borealis, an opportunistic feeder, is sensitive to a wider array of neuromodulators than Pugettia producta, a specialist feeder. The observed difference in modulatory capacity may be coincidental since these species are separated by phylogeny. We predict that the difference in modulatory capacity is a product of a differential need for variety in foregut muscle movements. This study examined two members of the same superfamily as P. producta, the opportunistically feeding snow crab (Chionoecetes opilio) and portly spider crab (Libinia emarginata). Using extracellular recording methods, the responses of isolated STNS preparations to various neuromodulators were measured. Initial qualitative results indicate that the STNS of C. opilio is sensitive to all of these neuromodulators. Additionally, previous data on the neuromodulatory capacity of L. emarginata was supported through similar electrophysiological analysis of the isolated STNS. As a first step in determining the mechanism of differential sensitivity between species, tissue-specific transcriptomes were generated and mined for neuromodulators.


        Miniature of The Role of the Nitric Oxide Negative Feedback Loop in the Stability of the Lobster Cardiac Ganglion <i>Homarus americanus</i>
        The Role of the Nitric Oxide Negative Feedback Loop in the Stability of the Lobster Cardiac Ganglion Homarus americanus
        Access to this record is restricted to members of the Bowdoin community. Log in here to view.

            Date: 2020-01-01

            Creator: Marie Marjorie Bergsund

            Access: Access restricted to the Bowdoin Community



              Miniature of The effect of early life adversity on basolateral amygdala projections to the prefrontal cortex in male and female rats during development
              The effect of early life adversity on basolateral amygdala projections to the prefrontal cortex in male and female rats during development
              Access to this record is restricted to members of the Bowdoin community. Log in here to view.

                  Date: 2023-01-01

                  Creator: Khushali N Patel

                  Access: Access restricted to the Bowdoin Community



                    Miniature of Early life adversity induces sex-specific behavioral changes and does not alter precocial neural recruitment in response to basolateral amygdala stimulation
                    Early life adversity induces sex-specific behavioral changes and does not alter precocial neural recruitment in response to basolateral amygdala stimulation
                    Access to this record is restricted to members of the Bowdoin community. Log in here to view.

                        Date: 2024-01-01

                        Creator: Zackery D. Reynolds

                        Access: Access restricted to the Bowdoin Community



                          Miniature of Modulation of Responses to Phasic stretches by Neuromodulators GYS and SGRN in the Cardiac Central Pattern Generator of the American Lobster, H. americanus
                          Modulation of Responses to Phasic stretches by Neuromodulators GYS and SGRN in the Cardiac Central Pattern Generator of the American Lobster, H. americanus
                          Access to this record is restricted to members of the Bowdoin community. Log in here to view.

                              Date: 2016-05-01

                              Creator: Michael M Kang

                              Access: Access restricted to the Bowdoin Community