Showing 4331 - 4340 of 5709 Items
Date: 2011-03-01
Creator: Tess Chakkalakal
Access: Open access
Date: 1947-01-01
Access: Open access
- Bowdoin College Bulletin no. 284
Date: 1941-01-01
Access: Open access
- Bowdoin College Bulletin no. 255
Date: 2020-12-01
Creator: J. Joe Hull, Melissa A. Stefanek, Patsy S. Dickinson, Andrew E. Christie
Access: Open access
- Over the past decade, many new peptide families have been identified via in silico analyses of genomic and transcriptomic datasets. While various molecular and biochemical methods have confirmed the existence of some of these new groups, others remain in silico discoveries of computationally assembled sequences only. An example of the latter are the CCRFamides, named for the predicted presence of two pairs of disulfide bonded cysteine residues and an amidated arginine-phenylalanine carboxyl-terminus in family members, which have been identified from annelid, molluscan, and arthropod genomes/transcriptomes, but for which no precursor protein-encoding cDNAs have been cloned. Using routine transcriptome mining methods, we identified four Homarus americanus (American lobster) CCRFamide transcripts that share high sequence identity across the predicted open reading frames but more limited conservation in their 5′ terminal ends, suggesting the Homarus gene undergoes alternative splicing. RT-PCR profiling using primers designed to amplify an internal fragment common to all of the transcripts revealed expression in the supraoesophageal ganglion (brain), eyestalk ganglia, and cardiac ganglion. Variant specific profiling revealed a similar profile for variant 1, eyestalk ganglia specific expression of variant 2, and an absence of variant 3 expression in the cDNAs examined. The broad distribution of CCRFamide transcript expression in the H. americanus nervous system suggests a potential role as a locally released and/or circulating neuropeptide. This is the first report of the cloning of a CCRFamide-encoding cDNA from any species, and as such, provides the first non-in silico support for the existence of this invertebrate peptide family.

Date: 2020-01-01
Creator: Jack Tarlton
Access: Access restricted to the Bowdoin Community
Date: 1955-01-01
Access: Open access
- Bowdoin College Bulletin no. 314
Date: 1992-01-01
Creator: J. Alexander, C. Bebek, K. Berkelman, D. Besson, T. E., Browder, D. G. Cassel, E. Cheu, D. M. Coffman, P. S. Drell, R. Ehrlich, R. S. Galik, M. Garcia-Sciveres, B. Geiser, B. Gittelman, S. W. Gray, D. L. Hartill, B. K. Heltsley, K. Honscheid, J. Kandaswamy, N. Katayama, P. C. Kim, D. L. Kreinick, J. D. Lewis, G. S. Ludwig, J. Masui, J. Mevissen, N. B. Mistry, S. Nandi, C. R. Ng, E. Nordberg, C. Grady
Access: Open access
- Using the CLEO II detector, we have accurately measured Ds decay branching ratios relative to the mode for the and states, for which there are conflicting claims; our results are 0.540.090.06 and 1.200.150.11, respectively. © 1992 The American Physical Society.
Date: 1966-01-01
Access: Open access
- Bowdoin College Bulletin no. 358
Date: 2019-10-01
Creator: Patsy S. Dickinson, Heidi M. Samuel, Elizabeth A. Stemmler, Andrew E. Christie
Access: Open access
- The SIFamides are a broadly conserved arthropod peptide family characterized by the C-terminal motif –SIFamide. In decapod crustaceans, two isoforms of SIFamide are known, GYRKPPFNGSIFamide (Gly1-SIFamide), which is nearly ubiquitously conserved in the order, and VYRKPPFNGSIFamide (Val1-SIFamide), known only from members of the astacidean genus Homarus. While much work has focused on the identification of SIFamide isoforms in decapods, there are few direct demonstrations of physiological function for members of the peptide family in this taxon. Here, we assessed the effects of Gly1- and Val1-SIFamide on the cardiac neuromuscular system of two closely related species of Cancer crab, Cancer borealis and Cancer irroratus. In each species, both peptides were cardioactive, with identical, dose-dependent effects elicited by both isoforms in a given species. Threshold concentrations for bioactivity are in the range typically associated with hormonal delivery, i.e., 10−9 to 10−8 M. Interestingly, and quite surprisingly, while the predicted effects of SIFamide on cardiac output are similar in both C. borealis and C. irroratus, frequency effects predominate in C. borealis, while amplitude effects predominate in C. irroratus. These findings suggest that, while SIFamide is likely to increase cardiac output in both crabs, the mechanism through which this is achieved is different in the two species. Immunohistochemical/mass spectrometric data suggest that SIFamide is delivered to the heart hormonally rather than locally, with the source of hormonal release being midgut epithelial endocrine cells in both Cancer species. If so, midgut-derived SIFamide may function as a regulator of cardiac output during the process of digestion.
Date: 1992-01-01
Creator: S. Henderson, K. Kinoshita, F. Pipkin, M. Procario, M., Saulnier, R. Wilson, J. Wolinski, D. Xiao, R. Ammar, P. Baringer, D. Coppage, R. Davis, P. Haas, M. Kelly, N. Kwak, Ha Lam, S. Ro, Y. Kubota, J. K. Nelson, D. Perticone, R. Poling, S. Schrenk, G. Crawford, R. Fulton, T. Jensen, D. R. Johnson, H. Kagan, R. Kass, R. Malchow, F. Morrow, J. Whitmore
Access: Open access
- We report new measurements of semileptonic branching fractions of B mesons produced at the '(4S) resonance determined by fitting the inclusive electron and muon momentum spectra to different theoretical models. Using B(B»'X"-») to denote the average of the semileptonic branching fractions for B decay to electrons and muons, we obtain B(B»'X"-»)= (10.5±0.2±0.4)% using the refined free-quark model of Altarelli et al., and B(B»'X"-»)=(11.2±0.3±0.4)% using a modified version of the form-factor model of Isgur et al., in which the D**"-» contribution is allowed to float in the fit. The average of these two results is B(B»'X"-»)=(10.8±0. 2±0.4±0.4)%, where the errors are statistical, systematic uncertainties in the measurement, and systematic uncertainties associated with the theoretical models, respectively. Semileptonic branching fractions as low as this are difficult to accommodate in theoretical models where hadronic B-meson decays arise only from spectator diagrams. We use dilepton yields to limit the uncertainty in the semileptonic branching fraction due to the possible existence of non-BB» decays of the '(4S). In addition, we tag neutral B mesons using the decays B»0'D*+- and B»0'D*+"-» to obtain the first direct measurement of semileptonic branching fractions for neutral B mesons; the average of the electron and muon results for neutral B mesons is B(B»0'X"-»)=(9.9±3.0±0.9)%. © 1992 The American Physical Society.