Showing 5561 - 5570 of 5716 Items
Date: 1950-01-01
Access: Open access
- Bowdoin College Bulletin no. 295
Date: 2018-07-01
Creator: Andrew E. Christie, Andy Yu, Micah G. Pascual, Vittoria Roncalli, Matthew C., Cieslak, Amanda N. Warner, Tess J. Lameyer, Meredith E. Stanhope, Patsy S. Dickinson, J. Joe Hull
Access: Open access
- Essentially all organisms exhibit recurring patterns of physiology/behavior that oscillate with a period of ~24-h and are synchronized to the solar day. Crustaceans are no exception, with robust circadian rhythms having been documented in many members of this arthropod subphylum. However, little is known about the molecular underpinnings of their circadian rhythmicity. Moreover, the location of the crustacean central clock has not been firmly established, although both the brain and eyestalk ganglia have been hypothesized as loci. The American lobster, Homarus americanus, is known to exhibit multiple circadian rhythms, and immunodetection data suggest that its central clock is located within the eyestalk ganglia rather than in the brain. Here, brain- and eyestalk ganglia-specific transcriptomes were generated and used to assess the presence/absence of transcripts encoding the commonly recognized protein components of arthropod circadian signaling systems in these two regions of the lobster central nervous system. Transcripts encoding putative homologs of the core clock proteins clock, cryptochrome 2, cycle, period and timeless were found in both the brain and eyestalk ganglia assemblies, as were transcripts encoding similar complements of putative clock-associated, clock input pathway and clock output pathway proteins. The presence and identity of transcripts encoding core clock proteins in both regions were confirmed using PCR. These findings suggest that both the brain and eyestalk ganglia possess all of the molecular components needed for the establishment of a circadian signaling system. Whether the brain and eyestalk clocks are independent of one another or represent a single timekeeping system remains to be determined. Interestingly, while most of the proteins deduced from the identified transcripts are shared by both the brain and eyestalk ganglia, assembly-specific isoforms were also identified, e.g., several period variants, suggesting the possibility of region-specific variation in clock function, especially if the brain and eyestalk clocks represent independent oscillators.

Date: 2021-01-01
Creator: Eugen Florin Cotei
Access: Access restricted to the Bowdoin Community
Date: 2009-04-15
Creator: Patsy S. Dickinson, Teerawat Wiwatpanit, Emily R. Gabranski, Rachel J. Ackerman, Jake S., Stevens, Christopher R. Cashman, Elizabeth A. Stemmler, Andrew E. Christie
Access: Open access
- The allatostatins comprise three structurally distinct peptide families that regulate juvenile hormone production by the insect corpora allata. A-type family members contain the C-terminal motif -YXFGLamide and have been found in species from numerous arthropod taxa. Members of the B-type family exhibit a -WX6Wamide C-terminus and, like the A-type peptides, appear to be broadly conserved within the Arthropoda. By contrast, members of the C-type family, typified by the unblocked C-terminus -PISCF, a pyroglutamine blocked N-terminus, and a disulfide bridge between two internal Cys residues, have only been found in holometabolous insects, i.e. lepidopterans and dipterans. Here, using transcriptomics, we have identified SYWKQCAFNAVSCFamide (disulfide bridging predicted between the two Cys residues), a known honeybee and water flea C-typelike peptide, from the American lobster Homarus americanus (infraorder Astacidea). Using matrix assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS), a mass corresponding to that of SYWKQCAFNAVSCFamide was detected in the H. americanus brain, supporting the existence of this peptide and its theorized structure. Furthermore, SYWKQCAFNAVSCFamide was detected by MALDI-FTMS in neural tissues from five additional astacideans as well as 19 members of four other decapod infraorders (i.e. Achelata, Anomura, Brachyura and Thalassinidea), suggesting that it is a broadly conserved decapod peptide. In H. americanus, SYWKQCAFNAVSCFamide is capable of modulating the output of both the pyloric circuit of the stomatogastric nervous system and the heart. This is the first demonstration of bioactivity for this peptide in any species.
Date: 2007-12-01
Creator: M. E. Msall, O. B. Wright, O. Matsuda
Access: Open access
- Picosecond shear acoustic pulses can be generated in solids using ultrashort optical pulses. Here we use this technique to seek high frequency shear waves in water, ethylene glycol and glycerol while simultaneously measuring high frequency longitudinal wave velocity and attenuation. We use a silica thin film on (114) GaAs to generate shear and longitudinal acoustic pulses at frequencies up to ∼50 GHz by ultrashort pulsed optical excitation. The acoustic pulses are transmitted into adjacent liquids, and are detected through variations in the optical reflectivity. Although we could not detect shear waves in these liquids, we did detect gigahertz longitudinal elastic stiffening. © 2007 IOP Publishing Ltd.
Date: 2018-07-01
Creator: Harrison P. Fisher, Micah G. Pascual, Sylvia I. Jimenez, David A. Michaelson, Colby T., Joncas, Eleanor D. Quenzer, Andrew E. Christie, Hadley W. Horch
Access: Open access
- The auditory system of the cricket, Gryllus bimaculatus, demonstrates an unusual amount of anatomical plasticity in response to injury, even in adults. Unilateral removal of the ear causes deafferented auditory neurons in the prothoracic ganglion to sprout dendrites across the midline, a boundary they typically respect, and become synaptically connected to the auditory afferents of the contralateral ear. The molecular basis of this sprouting and novel synaptogenesis in the adult is not understood. We hypothesize that well-conserved developmental guidance cues may recapitulate their guidance functions in the adult in order to facilitate this compensatory growth. As a first step in testing this hypothesis, we have generated a de novo assembly of a prothoracic ganglion transcriptome derived from control and deafferented adult individuals. We have mined this transcriptome for orthologues of guidance molecules from four well-conserved signaling families: Slit, Netrin, Ephrin, and Semaphorin. Here we report that transcripts encoding putative orthologues of most of the candidate developmental ligands and receptors from these signaling families were present in the assembly, indicating expression in the adult G. bimaculatus prothoracic ganglion.
Date: 2019-08-01
Creator: Samantha K. Barry, Taro Nakamura, Yuji Matsuoka, Christoph Straub, Hadley W., Horch, Cassandra G. Extavour
Access: Open access
- Altering gene function in a developing organism is central to different kinds of experiments. While tremendously powerful genetic tools have been developed in traditional model systems, it is difficult to manipulate genes or messenger RNA (mRNA) in most other organisms. At the same time, evolutionary and comparative approaches rely on an exploration of gene function in many different species, necessitating the development and adaptation of techniques for manipulating expression outside currently genetically tractable species. This protocol describes a method for injecting reagents into cricket eggs to assay the effects of a given manipulation on embryonic or larval development. Instructions for how to collect and inject eggs with beveled needles are described. This relatively straightforward technique is flexible and potentially adaptable to other insects. One can gather and inject dozens of eggs in a single experiment, and survival rates for buffer-only injections improve with practice and can be as high as 80%. This technique will support several types of experimental approaches including injection of pharmacological agents, in vitro capped mRNA to express genes of interest, double-stranded RNA (dsRNA) to achieve RNA interference, use of clustered regularly interspaced short palindromic repeats (CRISPR) in concert with CRISPR-associated protein 9 (Cas9) reagents for genomic modification, and transposable elements to generate transient or stable transgenic lines.

Date: 2021-01-01
Creator: Melissa G. Demczak
Access: Access restricted to the Bowdoin Community

Date: 2021-01-01
Creator: Ben Cook
Access: Access restricted to the Bowdoin Community