Showing 1 - 3 of 3 Items
Rapid phenotypic and genotypic diversification after exposure to the oral host niche in candida albicans
Date: 2018-07-01
Creator: Anja Forche, Gareth Cromie, Aleeza C. Gerstein, Norma V. Solis, Tippapha, Pisithkul, Waracharee Srifa, Eric Jeffery, Darren Abbey, Scott G. Filler, Aimée M. Dudley, Judith Berman
Access: Open access
- In vitro studies suggest that stress may generate random standing variation and that different cellular and ploidy states may evolve more rapidly under stress. Yet this idea has not been tested with pathogenic fungi growing within their host niche in vivo. Here, we analyzed the generation of both genotypic and phenotypic diversity during exposure of Candida albicans to the mouse oral cavity. Ploidy, aneuploidy, loss of heterozygosity (LOH), and recombination were determined using flow cytometry and double digest restriction site-associated DNA sequencing. Colony phenotypic changes in size and filamentous growth were evident without selection and were enriched among colonies selected for LOH of the GAL1 marker. Aneuploidy and LOH occurred on all chromosomes (Chrs), with aneuploidy more frequent for smaller Chrs and whole Chr LOH more frequent for larger Chrs. Large genome shifts in ploidy to haploidy often maintained one or more heterozygous disomic Chrs, consistent with random Chr missegregation events. Most isolates displayed several different types of genomic changes, suggesting that the oral environment rapidly generates diversity de novo. In sharp contrast, following in vitro propagation, isolates were not enriched for multiple LOH events, except in those that underwent haploidization and/or had high levels of Chr loss. The frequency of events was overall 100 times higher for C. albicans populations following in vivo passage compared with in vitro. These hyper-diverse in vivo isolates likely provide C. albicans with the ability to adapt rapidly to the diversity of stress environments it encounters inside the host.
Large-scale chromosomal changes and associated fitness consequences in pathogenic fungi
Date: 2014-01-01
Creator: Anja Forche
Access: Open access
- Pathogenic fungi encounter many different host environments to which they must adapt rapidly to ensure growth and survival. They also must be able to cope with alterations in established niches during long-term persistence in the host. Many eukaryotic pathogens have evolved a highly plastic genome, and large-scale chromosomal changes including aneuploidy, and loss of heterozygosity (LOH) can arise under various in vitro and in vivo stresses. Both aneuploidy and LOH can arise quickly during a single cell cycle, and it is hypothesized that they provide a rapid, albeit imprecise, solution to adaptation to stress until better and more refined solutions can be acquired by the organism. While LOH, with the extreme case of haploidization in Candida albicans, can purge the genome from recessive lethal alleles and/or generate recombinant progeny with increased fitness, aneuploidy, in the absence or rarity of meiosis, can serve as a non-Mendelian mechanism for generating genomic variation. © Springer Science+Business Media 2014.
Efficient and rapid identification of Candida albicans allelic status using SNP-RFLP
Date: 2009-11-01
Creator: Anja Forche, Musetta Steinbach, Judith Berman
Access: Open access
- Candida albicans is the most prevalent opportunistic fungal pathogen in the clinical setting, causing a wide spectrum of diseases ranging from superficial mucosal lesions to life-threatening deep-tissue infections. Recent studies provide strong evidence that C. albicans possesses an arsenal of genetic mechanisms promoting genome plasticity and that it uses these mechanisms under conditions of nutritional or antifungal drug stress. Two microarray-based methods, single nucleotide polymorphism (SNP) and comparative genome hybridization arrays, have been developed to study genome changes in C. albicans. However, array technologies can be relatively expensive and are not available to every laboratory. In addition, they often generate more data than needed to analyze specific genomic loci or regions. Here, we have developed a set of SNP-restriction fragment length polymorphism (RFLP) (or PCR-RFLP) markers, two per chromosome arm, for C. albicans. These markers can be used to rapidly and accurately detect large-scale changes in the C. albicans genome including loss of heterozygosity (LOH) at single loci, across chromosome arms or across whole chromosomes. Furthermore, skewed SNP-RFLP allelic ratios are indicative of trisomy at heterozygous loci. While less comprehensive than array-based approaches, we propose SNP-RFLP as an inexpensive, rapid, and reliable method to screen strains of interest for possible genome changes. © 2009 Federation of European Microbiological Societies.