Showing 1 - 3 of 3 Items

Formation of oral and pharyngeal dentition in teleosts depends on differential recruitment of retinoic acid signaling

Date: 2010-09-01

Creator: Yann Gibert, Laure Bernard, Melanie Debiais-Thibaud, Franck Bourrat, Jean Stephane, Joly, Karen Pottin, Axel Meyer, Sylvie Retaux, David W. Stock, William R. Jackman, Pawat Seritrakul, Gerrit Begemann, Vincent Laudet

Access: Open access

One of the goals of evolutionary developmental biology is to link specific adaptations to changes in developmental pathways. The dentition of cypriniform fishes, which in contrast to many other teleost fish species possess pharyngeal teeth but lack oral teeth, provides a suitable model to study the development of feeding adaptations. Here, we have examined the involvement of retinoic acid (RA) in tooth development and show that RA is specifically required to induce the pharyngeal tooth developmental program in zebrafish. Perturbation of RA signaling at this stage abolished tooth induction without affecting the development of tooth-associated ceratobranchial bones. We show that this inductive event is dependent on RA synthesis from aldh1a2 in the ventral posterior pharynx. Fibroblast growth factor (FGF) signaling has been shown to be critical for tooth induction in zebrafish, and its loss has been associated with oral tooth loss in cypriniform fishes. Pharmacological treatments targeting the RA and FGF pathways revealed that both pathways act independently during tooth induction. In contrast, we find that in Mexican tetra and medaka, species that also possess oral teeth, both oral and pharyngeal teeth are induced independently of RA. Our analyses suggest an evolutionary scenario in which the gene network controlling tooth development obtained RA dependency in the lineage leading to the cypriniforms. The loss of pharyngeal teeth in this group was cancelled out through a shift in aldh1a2 expression, while oral teeth might have been lost ultimately due to deficient RA signaling in the oral cavity. © FASEB.


Transgenic analysis of Dlx regulation in fish tooth development reveals evolutionary retention of enhancer function despite organ loss

Date: 2006-12-19

Creator: William R. Jackman, David W. Stock

Access: Open access

It has been considered a "law" that a lost structure cannot reappear in evolution. The common explanation, that genes required for the development of the lost structure degrade by mutation, remains largely theoretical, however. Additionally, the extent to which this mechanism applies to systems of repeated parts, where individual modules are likely to exhibit few unique aspects of genetic control, is unclear. We investigated reversibility of evolution in one such system, the vertebrate dentition, using as a model loss of oral teeth in cypriniform fishes, which include the zebra fish. This evolutionary event, which occurred >50 million years ago, has not been reversed despite subsequent diversification of feeding modes and retention of pharyngeal teeth. We asked whether the cis-regulatory region of a gene whose expression loss parallels cypriniform tooth loss, Dlx2b, retains the capacity for expression in oral teeth. We first created a zebrafish reporter transgenic line that recapitulates endogenous dlx2b expression. We then showed that this zebrafish construct drives reporter expression in oral teeth of the related characiform Astyanax mexicanus. This result, along with our finding that Dlx genes are required for normal tooth development, suggests that changes in trans-acting regulators of these genes were responsible for loss of cypriniform oral teeth. Preservation of oral enhancer function unused for >50 million years could be the result of pleiotropic function in the pharyngeal dentition. If enhancers of other genes in the tooth developmental pathway are similarly preserved, teeth lost from specific regions may be relatively easy to reacquire in evolution. © 2006 by The National Academy of Sciences of the USA.


Developmental genetic mechanisms of evolutionary tooth loss in cypriniform fishes

Date: 2006-08-01

Creator: David W. Stock, William R. Jackman, Josh Trapani

Access: Open access

The fossil record indicates that cypriniform fishes, a group including the zebrafish, lost oral teeth over 50 million years ago. Despite subsequent diversification of feeding modes, no cypriniform has regained oral teeth, suggesting the zebrafish as a model for studying the developmental genetic basis of evolutionary constraint. To investigate the mechanism of cypriniform tooth loss, we compared the oral expression of seven genes whose mammalian orthologs are involved in tooth initiation in the zebrafish and the Mexican tetra, Astyanax mexicanus, a related species retaining oral teeth. The most significant difference we found was an absence in zebrafish oral epithelium of expression of dlx2a and dlx2b, transcription factors that are expressed in early Astyanax odontogenic epithelium. Analysis of orthologous genes in the Japanese medaka (Oryzias latipes) and a catfish (Synodontis multipunctatus) suggests that expression was lost in cypriniforms, rather than gained in Astyanax. Treatment of Astyanaxwith an inhibitor of Fibroblast growth factor (Fgf) signaling produced a partial phenocopy of the zebrafish oral region, in that oral teeth, and expression of d1x2a and d1x2b, were lost, whereas shh and pitx2, genes whose expression is present in zebrafish oral epithelium, were unaffected. We hypothesize that a loss of Fgf signaling to oral epithelium was associated with cypriniform tooth loss.