Showing 1 - 2 of 2 Items

An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing

Date: 2018-01-01

Creator: P. Jeremy Werdell, Lachlan I.W. McKinna, Emmanuel Boss, Steven G. Ackleson, Susanne E., Craig, Watson W. Gregg, Zhongping Lee, Stéphane Maritorena, Collin S. Roesler, Cécile S. Rousseaux, Dariusz Stramski, James M. Sullivan, Michael S. Twardowski, Maria Tzortziou, Xiaodong Zhang

Access: Open access

Ocean color measured from satellites provides daily global, synoptic views of spectral water-leaving reflectances that can be used to generate estimates of marine inherent optical properties (IOPs). These reflectances, namely the ratio of spectral upwelled radiances to spectral downwelled irradiances, describe the light exiting a water mass that defines its color. IOPs are the spectral absorption and scattering characteristics of ocean water and its dissolved and particulate constituents. Because of their dependence on the concentration and composition of marine constituents, IOPs can be used to describe the contents of the upper ocean mixed layer. This information is critical to further our scientific understanding of biogeochemical oceanic processes, such as organic carbon production and export, phytoplankton dynamics, and responses to climatic disturbances. Given their importance, the international ocean color community has invested significant effort in improving the quality of satellite-derived IOP products, both regionally and globally. Recognizing the current influx of data products into the community and the need to improve current algorithms in anticipation of new satellite instruments (e.g., the global, hyperspectral spectroradiometer of the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission), we present a synopsis of the current state of the art in the retrieval of these core optical properties. Contemporary approaches for obtaining IOPs from satellite ocean color are reviewed and, for clarity, separated based their inversion methodology or the type of IOPs sought. Summaries of known uncertainties associated with each approach are provided, as well as common performance metrics used to evaluate them. We discuss current knowledge gaps and make recommendations for future investment for upcoming missions whose instrument characteristics diverge sufficiently from heritage and existing sensors to warrant reassessing current approaches.


Optical proxy for phytoplankton biomass in the absence of photophysiology: Rethinking the absorption line height

Date: 2013-01-01

Creator: Collin S. Roesler, Andrew H. Barnard

Access: Open access

The pigment absorption peak in the red waveband observed in phytoplankton and particulate absorption spectra is primarily associated with chlorophyll-a and exhibits much lower pigment packaging compared to the blue peak. The minor contributions to the signature by accessory pigments can be largely removed by computing the line height absorption at 676 nm above a linear background between approximately 650 nm and 715 nm. The line height determination is also effective in removing the contributions to total or particulate absorption by colored dissolved organic matter and non-algal particles, and is relatively independent of the effects of biofouling. The line height absorption is shown to be significantly related to the extracted chlorophyll concentration over a large range of natural optical regimes and diverse phytoplankton cultures. Unlike the in situ fluorometric method for estimating chlorophyll, the absorption line height is not sensitive to incident irradiance, in particular non-photochemical quenching. The combination of the two methods provides a combination of robust phytoplankton biomass estimates, pigment based taxonomic information and a means to estimate the photosynthetic parameter, , the irradiance at which photosynthesis transitions from light limitation to light saturation. © 2013 The Authors. E K