Showing 1 - 3 of 3 Items

Sign changes of Fourier coefficients of Hilbert modular forms

Date: 2014-01-01

Creator: Jaban Meher, Naomi Tanabe

Access: Open access

Sign changes of Fourier coefficients of various modular forms have been studied. In this paper, we analyze some sign change properties of Fourier coefficients of Hilbert modular forms, under the assumption that all the coefficients are real. The quantitative results on the number of sign changes in short intervals are also discussed. © 2014 Elsevier Inc.


On the nature of eγ and non-vanishing of derivatives of L-series at s=1/2

Date: 2014-04-30

Creator: M. Ram Murty, Naomi Tanabe

Access: Open access

In 2011, M.R. Murty and V.K. Murty [10] proved that if L(s, χD) is the Dirichlet L-series attached a quadratic character χD, and L'(1, χD)=0, then eγ is transcendental. This paper investigates such phenomena in wider collections of L-functions, with a special emphasis on Artin L-functions. Instead of s=1, we consider s=1/2. More precisely, we prove thatexp (L'(1/2,χ)L(1/2,χ)-αγ) is transcendental with some rational number α. In particular, if we have L(1/2, χ)≠0 and L'(1/2, χ)=0 for some Artin L-series, we deduce the transcendence of eγ.


On L-functions and the 1-Level Density

Date: 2023-01-01

Creator: Arav Agarwal

Access: Open access

We begin with the classical study of the Riemann zeta function and Dirichlet L-functions. This includes a full exposition on one of the most useful ways of exploiting their connection with primes, namely, explicit formulae. We then proceed to introduce statistics of low-lying zeros of Dirichlet L-functions, discussing prior results of Fiorilli and Miller (2015) on the 1-level density of Dirichlet L-functions and their achievement in surpassing the prediction of the powerful Ratios Conjecture. Finally, we present our original work partially generalizing these results to the case of Hecke L-functions over imaginary quadratic fields.