Showing 1 - 2 of 2 Items

Sea star inspired crawling and bouncing

Date: 2020-01-01

Creator: Sina Heydari, Amy Johnson, Olaf Ellers, Matthew J. McHenry, Eva, Kanso

Access: Open access

The oral surface of sea stars is lined with arrays of tube feet that enable them to achieve highly controlled locomotion on various terrains. The activity of the tube feet is orchestrated by a nervous system that is distributed throughout the body without a central brain. How such a distributed nervous system produces a coordinated locomotion is yet to be understood. We develop mathematical models of the biomechanics of the tube feet and the sea star body. In the model, the feet are coupled mechanically through their structural connection to a rigid body. We formulate hierarchical control laws that capture salient features of the sea star nervous system. Namely, at the tube foot level, the power and recovery strokes follow a state-dependent feedback controller. At the system level, a directionality command is communicated through the nervous system to all tube feet. We study the locomotion gaits afforded by this hierarchical control model. We find that these minimally coupled tube feet coordinate to generate robust forward locomotion, reminiscent of the crawling motion of sea stars, on various terrains and for heterogeneous tube feet parameters and initial conditions. Our model also predicts a transition from crawling to bouncing consistently with recent experiments. We conclude by commenting on the implications of these findings for understanding the neuromechanics of sea stars and their potential application to autonomous robotic systems.


Forces generated during stretch in the heart of the lobster Homarus americanus are anisotropic and are altered by neuromodulators

Date: 2016-01-01

Creator: E. S. Dickinson, A. S. Johnson, O. Ellers, P. S. Dickinson

Access: Open access

Mechanical and neurophysiological anisotropies mediate three-dimensional responses of the heart of Homarus americanus. Although hearts in vivo are loaded multi-axially by pressure, studies of invertebrate cardiac function typically use uniaxial tests. To generate whole-heart length-tension curves, stretch pyramids at constant lengthening and shortening rates were imposed uniaxially and biaxially along longitudinal and transverse axes of the beating whole heart. To determine whether neuropeptides that are known to modulate cardiac activity in H. americanus affect the active or passive components of these length-tension curves, we also performed these tests in the presence of SGRNFLRFamide (SGRN) and GYSNRNYLRFamide (GYS). In uniaxial and biaxial tests, both passive and active forces increased with stretch along both measurement axes. The increase in passive forces was anisotropic, with greater increases along the longitudinal axis. Passive forces showed hysteresis and active forces were higher during lengthening than shortening phases of the stretch pyramid. Active forces at a given length were increased by both neuropeptides. To exert these effects, neuropeptides might have acted indirectly on the muscle via their effects on the cardiac ganglion, directly on the neuromuscular junction, or directly on the muscles. Because increases in response to stretch were also seen in stimulated motor nerve-muscle preparations, at least some of the effects of the peptides are likely peripheral. Taken together, these findings suggest that flexibility in rhythmic cardiac contractions results from the amplified effects of neuropeptides interacting with the length-tension characteristics of the heart.