Showing 1 - 2 of 2 Items

Optical proxy for phytoplankton biomass in the absence of photophysiology: Rethinking the absorption line height

Date: 2013-01-01

Creator: Collin S. Roesler, Andrew H. Barnard

Access: Open access

The pigment absorption peak in the red waveband observed in phytoplankton and particulate absorption spectra is primarily associated with chlorophyll-a and exhibits much lower pigment packaging compared to the blue peak. The minor contributions to the signature by accessory pigments can be largely removed by computing the line height absorption at 676 nm above a linear background between approximately 650 nm and 715 nm. The line height determination is also effective in removing the contributions to total or particulate absorption by colored dissolved organic matter and non-algal particles, and is relatively independent of the effects of biofouling. The line height absorption is shown to be significantly related to the extracted chlorophyll concentration over a large range of natural optical regimes and diverse phytoplankton cultures. Unlike the in situ fluorometric method for estimating chlorophyll, the absorption line height is not sensitive to incident irradiance, in particular non-photochemical quenching. The combination of the two methods provides a combination of robust phytoplankton biomass estimates, pigment based taxonomic information and a means to estimate the photosynthetic parameter, , the irradiance at which photosynthesis transitions from light limitation to light saturation. © 2013 The Authors. E K


Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation

Date: 2010-10-01

Creator: Wayne H. Slade, Emmanuel Boss, Giorgio Dall'olmo, M. Rois Langner, James, Loftin, Michael J. Behrenfeld, Collin Roesler, Toby K. Westberry

Access: Open access

Optical sensors have distinct advantages when used in ocean observatories, autonomous platforms, and on vessels of opportunity, because of their high-frequency measurements, low power consumption, and the numerous established relationships between optical measurements and biogeochemical variables. However, the issues of biofouling and instrument stability over time remain complicating factors when optical instruments are used over periods longer than several days. Here, a method for obtaining calibration-independent measurements of spectral particle absorption and attenuation is presented. Flow-through optical instrumentation is routinely diverted through a large-surface area 0.2-μm cartridge filter, allowing for the calculation of particle optical properties by differencing temporally adjacent filtered and whole water samples. This approach yields measurements that are independent of drift in instrument calibration. The method has advantages not only for coastally moored deployments, but also for applications in optically clear waters where uncertainties in instrument calibration can be a significant part of the signal measured. The differencing technique is demonstrated using WET Labs (Philomath, Oregon) ac-9 and ac-s multi- and hyperspectral absorption and attenuation meters. For the ac-s sensor, a correction scheme is discussed that utilizes the spectral shape of water absorption in the near-infrared to improve the accuracy of temperature and scattering-corrected spectra. Flow-through particulate absorption measurements are compared with discrete filter-pad measurements and are found to agree well (R = 0.77; rmse = 0.0174 m ). © 2010 American Meteorological Society. 2 -1