Showing 1 - 2 of 2 Items

Fgf signaling is required for zebrafish tooth development

Date: 2004-10-01

Creator: William R. Jackman, Bruce W. Draper, David W. Stock

Access: Open access

We have investigated fibroblast growth factor (FGF) signaling during the development of the zebrafish pharyngeal dentition with the goal of uncovering novel roles for FGFs in tooth development as well as phylogenetic and topographic diversity in the tooth developmental pathway. We found that the tooth-related expression of several zebrafish genes is similar to that of their mouse orthologs, including both epithelial and mesenchymal markers. Additionally, significant differences in gene expression between zebrafish and mouse teeth are indicated by the apparent lack of fgf8 and pax9 expression in zebrafish tooth germs. FGF receptor inhibition with SU5402 at 32 h blocked dental epithelial morphogenesis and tooth mineralization. While the pharyngeal epithelium remained intact as judged by normal pitx2 expression, not only was the mesenchymal expression of lhx6 and lhx7 eliminated as expected from mouse studies, but the epithelial expression of dlx2a, dlx2b, fgf3, and fgf4 was as well. This latter result provides novel evidence that the dental epithelium is a target of FGF signaling. However, the failure of SU5402 to block localized expression of pitx2 suggests that the earliest steps of tooth initiation are FGF-independent. Investigations of specific FGF ligands with morpholino antisense oligonucleotides revealed only a mild tooth shape phenotype following fgf4 knockdown, while fgf8 inhibition revealed only a subtle down-regulation of dental dlx2b expression with no apparent effect on tooth morphology. Our results suggest redundant FGF signals target the dental epithelium and together are required for dental morphogenesis. Further work will be required to elucidate the nature of these signals, particularly with respect to their origins and whether they act through the mesenchyme. © 2004 Elsevier Inc. All rights reserved.


Developmental genetic mechanisms of evolutionary tooth loss in cypriniform fishes

Date: 2006-08-01

Creator: David W. Stock, William R. Jackman, Josh Trapani

Access: Open access

The fossil record indicates that cypriniform fishes, a group including the zebrafish, lost oral teeth over 50 million years ago. Despite subsequent diversification of feeding modes, no cypriniform has regained oral teeth, suggesting the zebrafish as a model for studying the developmental genetic basis of evolutionary constraint. To investigate the mechanism of cypriniform tooth loss, we compared the oral expression of seven genes whose mammalian orthologs are involved in tooth initiation in the zebrafish and the Mexican tetra, Astyanax mexicanus, a related species retaining oral teeth. The most significant difference we found was an absence in zebrafish oral epithelium of expression of dlx2a and dlx2b, transcription factors that are expressed in early Astyanax odontogenic epithelium. Analysis of orthologous genes in the Japanese medaka (Oryzias latipes) and a catfish (Synodontis multipunctatus) suggests that expression was lost in cypriniforms, rather than gained in Astyanax. Treatment of Astyanaxwith an inhibitor of Fibroblast growth factor (Fgf) signaling produced a partial phenocopy of the zebrafish oral region, in that oral teeth, and expression of d1x2a and d1x2b, were lost, whereas shh and pitx2, genes whose expression is present in zebrafish oral epithelium, were unaffected. We hypothesize that a loss of Fgf signaling to oral epithelium was associated with cypriniform tooth loss.