Showing 1 - 2 of 2 Items

Bilateral consequences of chronic unilateral deafferentation in the auditory system of the cricket gryllus bimaculatus

Date: 2011-04-01

Creator: Hadley Wilson Horch, Elizabeth Sheldon, Claire C. Cutting, Claire R. Williams, Dana M., Riker, Hannah R. Peckler, Rohit B. Sangal

Access: Open access

The auditory system of the cricket has the unusual ability to respond to deafferentation by compensatory growth and synapse formation. Auditory interneurons such as ascending neuron 2 (AN-2) in the cricket Gryllus bimaculatus possess a dendritic arbor that normally grows up to, but not over, the midline of the prothoracic ganglion. After chronic deafferentation throughout larval development, however, the AN-2 dendritic arbor changes dramatically, and medial dendrites sprout across the midline where they form compensatory synapses with the auditory afferents from the contralateral ear. We quantified the extent of the effects of chronic, unilateral deafferentation by measuring several cellular parameters of 3 different neuronal components of the auditory system: the deafferented AN-2, the contralateral (or nondeafferented) AN-2 and the contralateral auditory afferents. Neuronal tracers and confocal microscopy were used to visualize neurons, and double-label experiments were performed to examine the cellular relationship between pairs of cells. Dendritic complexity was quantified using a modified Sholl analysis, and the length and volume of processes and presynaptic varicosities were assessed under control and deafferented conditions. Chronic deafferentation significantly influenced the morphology of all 3 neuronal components examined. The overall dendritic complexity of the deafferented AN-2 dendritic arbor was reduced, while both the contralateral AN-2 dendritic arbor and the remaining, intact, auditory afferents grew longer. We found no significant changes in the volume or density of varicosities after deafferentation. These complex cellular changes after deafferentation are interpreted in the light of the reported differential regulation of vesicle-associated membrane protein and semaphorin 2a. Copyright © 2011 S. Karger AG, Basel.


Differential gene expression during compensatory sprouting of dendrites in the auditory system of the cricket Gryllus bimaculatus

Date: 2009-08-01

Creator: H. W. Horch, S. S. McCarthy, S. L. Johansen, J. M. Harris

Access: Open access

Neurones that lose their presynaptic partners because of injury usually retract or die. However, when the auditory interneurones of the cricket Gryllus bimaculatus are denervated, dendrites respond by growing across the midline and forming novel synapses with the opposite auditory afferents. Suppression subtractive hybridization was used to detect transcriptional changes 3 days after denervation. This is a stage at which we demonstrate robust compensatory dendritic sprouting. Whereas 49 unique candidates were down-regulated, no sufficiently up-regulated candidates were identified at this time point. Several candidates identified in this study are known to influence the translation and degradation of proteins in other systems. The potential role of these factors in the compensatory sprouting of cricket auditory interneurones in response to denervation is discussed. © 2009 The Royal Entomological Society.