Showing 1 - 4 of 4 Items

ELMO, A Possible Pectin Biosynthesis Scaffold Access to this record is restricted to members of the Bowdoin community. Log in here to view.
Date: 2023-01-01
Creator: Nuoya (Laura) Yang
Access: Access restricted to the Bowdoin Community
The cell wall-associated kinases, WAKs, as pectin receptors
Date: 2012-05-08
Creator: Bruce D. Kohorn, Susan L. Kohorn
Access: Open access
- The wall-associated kinases, WAKs, are encoded by five highly similar genes clustered in a 30-kb locus in Arabidopsis. These receptor-like proteins contain a cytoplasmic serine threonine kinase, a transmembrane domain, and a less conserved region that is bound to the cell wall and contains a series of epidermal growth factor repeats. Evidence is emerging that WAKs serve as pectin receptors, for both short oligogalacturonic acid fragments generated during pathogen exposure or wounding, and for longer pectins resident in native cell walls. This ability to bind and respond to several types of pectins correlates with a demonstrated role for WAKs in both the pathogen response and cell expansion during plant development. © 2012 Kohorn and Kohorn.
A dominant allele of arabidopsis pectin-binding wall-associated kinase induces a stress response suppressed by MPK6 but not MPK3 mutations
Date: 2012-01-01
Creator: Bruce D. Kohorn, Susan L. Kohorn, Tanya Todorova, Gillian Baptiste, Kevin, Stansky, Meghan McCullough
Access: Open access
- The plant cell wall is composed of a matrix of cellulose fibers, flexible pectin polymers, and an array of assorted carbohydrates and proteins. The receptor-like Wall-Associated Kinases (WAKs) of Arabidopsis bind pectin in the wall, and are necessary both for cell expansion during development and for a response to pathogens and wounding. Mitogen Activated Protein Kinases (MPKs) form a major signaling link between cell surface receptors and both transcriptional and enzyme regulation in eukaryotes, and Arabidopsis MPK6 and MPK3 indeed have important roles in development and the response to stress and pathogens. A dominant allele of WAK2 requires kinase activity and activates a stress response that includes an increased ROS accumulation and the up-regulation of numerous genes involved in pathogen resistance, wounding, and cell wall biogenesis. This dominant allele requires a functional pectin binding and kinase domain, indicating that it is engaged in a WAK signaling pathway. A null mutant of the major plasma membrane ROS-producing enzyme complex, rbohd/f does not suppress the WAK2cTAP-induced phenotype. A mpk6, but not a mpk3, null allele is able to suppress the effects of this dominant WAK2 mutation, thus distinguishing MPK3 and MPK6, whose activity previously was thought to be redundant. Pectin activation of gene expression is abated in a wak2-null, but is tempered by the WAK-dominant allele that induces elevated basal stress-related transcript levels. The results suggest a mechanism in which changes to the cell wall can lead to a large change in cellular responses and help to explain how pathogens and wounding can have general effects on growth. The Author 2011. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.2011 © The Author 2011. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.
Pectin dependent cell adhesion restored by a mutant microtubule organizing membrane protein
Date: 2021-04-01
Creator: Bruce D. Kohorn, Jacob Dexter-Meldrum, Frances D.H. Zorensky, Salem Chabout, Gregory, Mouille, Susan Kohorn
Access: Open access
- The cellulose-and pectin-rich plant cell wall defines cell structure, mediates defense against pathogens, and facilitates plant cell adhesion. An adhesion mutant screen of Arabidopsis hypocotyls identified a new allele of QUASIMODO2 (QUA2), a gene required for pectin accumulation and whose mutants have reduced pectin content and adhesion defects. A suppressor of qua2 was also isolated and describes a null allele of SABRE (SAB), which encodes a previously described plasma membrane protein required for longitudinal cellular expansion that organizes the tubulin cytoskeleton. sab mutants have increased pectin content, increased levels of expression of pectin methylesterases and extensins, and reduced cell surface area relative to qua2 and Wild Type, con-tributing to a restoration of cell adhesion.